Bisphenol A (BPA) is a typical environmental estrogen that is distributed worldwide and has the potential to pose a hazard to the ecological environment and human health. The development of an efficient and sensitive sensing strategy for the monitoring of BPA residues is of paramount importance. A novel electrochemical sensor based on carbon black and carbon nanofibers composite (CB/f-CNF)-assisted signal amplification has been successfully constructed for the amperometric detection of BPA in foods. Herein, the hybrid CB/f-CNF was prepared using a simple one-step ultrasonication method, and exhibited good electron transfer capability and excellent catalytic properties, which can be attributed to the large surface area of carbon black and the strong enhancement of the conductivity and porosity of carbon nanofibers, which promote a faster electron transfer process on the electrode surface. Under the optimized conditions, the proposed CB/f-CNF/GCE sensor exhibited a wide linear response range (0.4-50.0 × 10 mol/L) with a low limit of detection of 5.9 × 10 mol/L for BPA quantification. Recovery tests were conducted on canned peaches and boxed milk, yielding satisfactory recoveries of 86.0-102.6%. Furthermore, the developed method was employed for the rapid and sensitive detection of BPA in canned meat and packaged milk, demonstrating comparable accuracy to the HPLC method. This work presents an efficient signal amplification strategy through the utilization of carbon/carbon nanocomposite sensitization technology.

Download full-text PDF

Source
http://dx.doi.org/10.3390/foods14020314DOI Listing

Publication Analysis

Top Keywords

carbon black
8
carbon nanofibers
8
signal amplification
8
detection bpa
8
electron transfer
8
carbon
5
bpa
5
facile electrode
4
electrode modification
4
modification approach
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!