The quality of frozen crayfish () is challenged by freeze-thaw (FT) cycles during storage. The effect of freezing methods on the quality of crayfish during FT cycles was investigated by comparing physicochemical properties, microstructure, and myofibrillar protein (MPs) properties. Three methods were used for crayfish freezing, including air convective freezing (AF) at -20 °C and -50 °C, as well as liquid nitrogen freezing (LNF) at -80 °C. The frozen crayfish were thawed at 4 °C after 45 d of frozen storage as 1 FT cycle. After 5 FT cycles, the water holding capacity of LNF crayfish (70.8%) was significantly ( < 0.05) higher than that of -20 °C AF crayfish (60.6%) and -50 °C AF crayfish (63.5%). The drip loss of LNF crayfish (7.83%) was significantly lower than that of AF crayfish. Moreover, LNF maintained the gel strength and the thermal stability of MPs from crayfish with higher gel storage modulus and enthalpy. These results demonstrated that LNF minimized the formation of large ice crystals, preserving the structural integrity of muscle and the properties of MPs, thereby maintaining crayfish quality. This study investigated the effect of LNF in preserving crayfish quality during FT cycles, providing valuable insights for reducing the quality degradation of aquatic products during storage and transportation.

Download full-text PDF

Source
http://dx.doi.org/10.3390/foods14020279DOI Listing

Publication Analysis

Top Keywords

crayfish
13
liquid nitrogen
8
nitrogen freezing
8
quality crayfish
8
freeze-thaw cycles
8
frozen crayfish
8
-20 °c
8
-50 °c
8
°c frozen
8
lnf crayfish
8

Similar Publications

Industrial robotic arms are often subject to significant end-effector pose deviations from the target position due to the combined effects of nonlinear deformations such as link flexibility, joint compliance, and end-effector load. To address this issue, a study was conducted on the analysis and compensation of end-position errors in a six-degree-of-freedom robotic arm. The kinematic model of the robotic arm was established using the Denavit-Hartenberg (DH) parameter method, and a rigid-flexible coupled virtual prototype model was developed using ANSYS and ADAMS.

View Article and Find Full Text PDF

Natural populations of crayfish in Europe have experienced significant declines due to the spread of crayfish plague, overfishing, competition with invasive crayfish species, and habitat degradation. Consequently, crayfish farming has gained importance in meeting the increasing demand for crayfish products. Although Russia boasts abundant water resources, the development of crayfish aquaculture remains nascent.

View Article and Find Full Text PDF

The quality of frozen crayfish () is challenged by freeze-thaw (FT) cycles during storage. The effect of freezing methods on the quality of crayfish during FT cycles was investigated by comparing physicochemical properties, microstructure, and myofibrillar protein (MPs) properties. Three methods were used for crayfish freezing, including air convective freezing (AF) at -20 °C and -50 °C, as well as liquid nitrogen freezing (LNF) at -80 °C.

View Article and Find Full Text PDF

Combined exposure to microplastics and copper elicited size-dependent uptake and toxicity responses in red swamp crayfish (Procambarus clarkia).

J Hazard Mater

January 2025

State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, PR China, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China. Electronic address:

In recent years, the toxicity of microplastics (MPs) in combination with heavy metals, particularly the influence of varying microplastic sizes on their toxic effects, has attracted widespread attention. In this study, red swamp crayfish (Procambarus clarkia) were exposed to MPs of two particle sizes (S-MPs: 5 μm, 1 mg/L; and L-MPs: 100 μm, 1 mg/L) and Cu (5 mg/L) individually or in combination for 96 h. The accumulation patterns of MPs were as follows: gills > intestines > hepatopancreas > muscles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!