AI Article Synopsis

Article Abstract

Emulsifiers with antioxidant properties, such as protein/polyphenol complexes, adsorb at the oil-water interface and improve the physical and oxidative stability of emulsions. Here, 2% (/) sodium caseinate and varying concentrations of phloretin (0-10 mM) were used to stabilize oil-in-water emulsions. Control emulsions with protein alone showed poor stability with increased droplet sizes from 0.33 µm to 5.18 µm after 30 days, while no significant change was observed in emulsions containing phloretin (remaining below 400 nm). The in vitro antioxidant activities increased with increasing phloretin concentrations (0 to 10 mM). In the ABTS assay, the antioxidant activity improved from 14.02 ± 8.33% to 95.09 ± 1.31%, and in the DPPH assay, it increased from 32.59 ± 2.73% to 99.03 ± 0.14%. Similarly, the oxidative stability of the emulsions improved with increasing phloretin concentrations (0 to 10 mM). After 30 days of storage, PV decreased from 38.22 ± 2.58 µM to 11.81 ± 2.55 µM, and MDA content reduced from 48.43 ± 0.31 µM to 7.24 ± 0.21 µM. Measuring the apparent viscosity demonstrated a reduction in viscosity with the addition of phloretin. These findings demonstrate that incorporating phloretin into sodium caseinate-stabilized emulsions as a novel antioxidant emulsifier can be an effective strategy to extend the shelf life of emulsified food products prone to oxidative deterioration.

Download full-text PDF

Source
http://dx.doi.org/10.3390/foods14020236DOI Listing

Publication Analysis

Top Keywords

oil-in-water emulsions
8
oxidative stability
8
stability emulsions
8
increasing phloretin
8
phloretin concentrations
8
emulsions
7
phloretin
6
µm
6
antioxidant
5
formulation characterization
4

Similar Publications

L-Threonine-Derived Biodegradable Polyurethane Nanoparticles for Sustained Carboplatin Release.

Pharmaceutics

December 2024

Department of Polymer Science and Engineering, Pusan National University, Busan 46241, Republic of Korea.

The use of polymeric nanoparticles (NPs) in drug delivery systems offers the advantages of enhancing drug efficacy and minimizing side effects; In this study, L-threonine polyurethane (LTPU) NPs have been fabricated by water-in-oil-in-water emulsion and solvent evaporation using biodegradable and biocompatible LTPU. This polymer was pre-synthesized through the use of an amino acid-based chain extender, desaminotyrosyl L-threonine hexyl ester (DLTHE), where urethane bonds are formed by poly(lactic acid)-poly(ethylene glycol)-poly(lactic acid) (PLA-PEG-PLA) triblock copolymer and 1,6-hexamethylene diisocyanate (HDI). LTPU is designed to be degraded by hydrolysis and enzymatic activity due to the presence of ester bonds and peptide bonds within the polymer backbone.

View Article and Find Full Text PDF

Emulsifiers with antioxidant properties, such as protein/polyphenol complexes, adsorb at the oil-water interface and improve the physical and oxidative stability of emulsions. Here, 2% (/) sodium caseinate and varying concentrations of phloretin (0-10 mM) were used to stabilize oil-in-water emulsions. Control emulsions with protein alone showed poor stability with increased droplet sizes from 0.

View Article and Find Full Text PDF

Background: Foot-and-mouth disease (FMD) causes significant economic losses, prompting vaccination as a primary control strategy. Virus-like particles (VLPs) have emerged as promising candidates for FMD vaccines but require adjuvants to enhance their immunogenicity. In this study, we evaluated the immunogenicity of a VLP-based vaccine with a water-in-oil-in-water (W/O/W) emulsion adjuvant, named WT.

View Article and Find Full Text PDF

This study investigates the development and comprehensive characterization of innovative thermoresponsive gels incorporating rosemary essential oil (RoEO) encapsulated in poly(lactic--glycolic acid) (PLGA) microparticles, with a focus on their potential applications in topical antimicrobial and wound healing therapies. RoEO, renowned for its robust antimicrobial, antioxidant, and wound-healing properties, was subjected to detailed chemical profiling using gas chromatography-mass spectrometry (GC-MS), which identified oxygenated monoterpenes as its dominant constituents. PLGA microparticles were synthesized through an optimized oil-in-water emulsion technique, ensuring high encapsulation efficiency and structural integrity.

View Article and Find Full Text PDF

Understanding the adsorption features of polymer microgels with different chemical compositions and structures is crucial in studying the mechanisms of respective emulsion stabilization. Specifically, the use of stimuli-responsive particles can introduce new properties and broaden the application range of such complex systems. Recently, we demonstrated that emulsions stabilized by microgels composed of interpenetrating networks (IPNs) of poly-N-isopropylacrylamide (PNIPAM) and polyacrylic acid (PAA) exhibit higher colloidal stability upon heating compared to PNIPAM homopolymer and other relevant PNIPAM-based copolymer counterparts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!