The widespread use of thiamethoxam has led to pesticide residues that have sparked global concerns regarding ecological and human health risks. A pressing requirement exists for a detection method that is both swift and sensitive. Herein, we introduced an innovative fluorescence biosensor constructed from alendronic acid (ADA)-modified upconversion nanoparticles (UCNPs) linked with magnetic nanoparticles (MNPs) via aptamer recognition for the detection of thiamethoxam. Through base pairing, thiamethoxam-specific aptamer-functionalized MNPs (apt-MNPs) were integrated with complementary DNA-functionalized UCNPs (cDNA-UCNPs) to create the MNPs@UCNPs fluorescence biosensor. Thiamethoxam specifically attached to apt-MNPs, leading to their separation from cDNA-UCNPs, which in turn led to a reduction in fluorescence intensity at 544 nm following separation by an external magnetic field. The change in fluorescence intensity (ΔI) was directly correlated with the concentration of thiamethoxam, enabling the quantitative analysis of the pesticide. With optimized detection parameters, the biosensor was capable of quantifying thiamethoxam within a concentration span of 0.4-102.4 ng·mL, and it achieved a detection limit as minute as 0.08 ng·mL. Moreover, leveraging the swift magnetic concentration properties of MNPs, the assay duration could be abbreviated to 25 min. The research exhibited a swift and precise sensing platform that yielded promising results in samples of cucumber, cabbage, and apple.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3390/foods14020182 | DOI Listing |
Foods
January 2025
College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
The widespread use of thiamethoxam has led to pesticide residues that have sparked global concerns regarding ecological and human health risks. A pressing requirement exists for a detection method that is both swift and sensitive. Herein, we introduced an innovative fluorescence biosensor constructed from alendronic acid (ADA)-modified upconversion nanoparticles (UCNPs) linked with magnetic nanoparticles (MNPs) via aptamer recognition for the detection of thiamethoxam.
View Article and Find Full Text PDFSmall
January 2025
XJTU-Oxford International Joint Laboratory for Catalysis, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.
Semiconductor photocatalysts embedded with rare earth upconversion nanoparticles (REUPs) are a promising strategy to improve their photoresponse range, but their photocatalytic performance within the near-infrared (NIR) region is far from satisfactory. Here, a method is reported to improve the photocatalytic activity by adjusting the nanocavity of upconversion nanoparticles inside a semiconductor. Two types of CdS embedded with NaYF:Yb,Er photocatalysts with core-shell structure (no cavity) (NYE/CdS) and yolk-shell structure (empty cavity) (NYE@CdS) are synthesized by different methods.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
School of Materials Science& Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China.
Lanthanide-doped upconversion luminescent nanoparticles (UCNPs) have garnered extensive attention due to their notable anti-Stokes shifts and superior photostability. Notably, Ho-based UCNPs present a complex energy level configuration, which poses challenges in augmenting their luminescence efficiency. Herein, a rational design strategy was used to enhance the upconversion luminescence intensity of Ho ions by improving the photon absorption ability and energy utilization efficiency.
View Article and Find Full Text PDFNanoscale Horiz
January 2025
Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.
Upconverting nanoparticles (UCNPs) convert near-infrared (IR) light into higher-energy visible light, allowing them to be used in applications such as biological imaging, nano-thermometry, and photodetection. It is well known that the upconversion luminescent efficiency of UCNPs can be enhanced by using a host material with low phonon energies, but the use of low-vibrational-energy inorganic ligands and non-epitaxial shells has been relatively underexplored. Here, we investigate the functionalization of lanthanide-doped NaYF UCNPs with low-vibrational-energy SnS ligands.
View Article and Find Full Text PDFMikrochim Acta
January 2025
Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China.
An exciting upconversion nanoprobe conditioning strategy is proposed to improve the signal-to-background ratio (SBR) through a dye-sensitized strategy, in which the dye functions both as a recognition unit of the detection target and as a sensitizer to amplify the visible luminescence of the lanthanide-doped upconversion nanoparticles (UCNPs), instead of a quencher. The application of this dye-sensitized upconversion nanoprobe to the visual detection of nerve agent mimics diethoxy phosphatidylcholine (DCP) showed excellent detection performance, with up to 110-fold enhancement of the luminescence response of the probe in DCP solution and a detection limit as low as 2 nM. Finally, we performed visual detection of DCP solution and vapor by using test strips containing the probe.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!