Wheat germ is a byproduct of the cereal industry that contains high levels of protein, fiber, B vitamins, minerals, and other functional microcomponents. However, so far, few applications have been found in the meat industry despite the growing interest in replacing meat with vegetable proteins. Therefore, the use of wheat germ for the production of low-fat frankfurters was considered. Five different formulations were prepared: control with pork meat and the following four to achieve 25%, 50%, 75%, and 100% lean meat substitution by wheat germ. Proximal composition, color, texture, emulsion characterization, fatty acid profile, fat oxidation, and consumer acceptance were then analyzed. The results showed that the incorporation of wheat germ improved emulsion stability, decreasing significantly total expressible fluid and jelly/fat separation, although increasing the back extrusion force. In terms of the final product, the progressive substitution of meat by germ resulted in significant increases in carbohydrates, in special of fiber, and ash as well as significant decreases in moisture and total fat. Sausages made with germ were darker (L*), as well as harder, chewier, and gummier, but less cohesive and elastic. Similarly, wheat germ substitution improved the quality of the lipid profile showing higher levels of, but decreased acceptability for replacements > 25%. Substitution of meat was feasible up to 25%, a formulation for which there was hardly any significant difference with the control.

Download full-text PDF

Source
http://dx.doi.org/10.3390/foods14020178DOI Listing

Publication Analysis

Top Keywords

wheat germ
24
lean meat
8
substitution meat
8
meat
7
germ
7
wheat
6
germ partial
4
partial total
4
total substitutive
4
substitutive lean
4

Similar Publications

: Drug delivery systems (DDSs) offer efficient treatment solutions to challenging diseases such as central nervous system (CNS) diseases by bypassing biological barriers such as the blood-brain barrier (BBB). Among DDSs, polymeric nanoparticles (NPs), particularly poly(lactic-co-glycolic acid) (PLGA) NPs, hold an outstanding position due to their biocompatible and biodegradable qualities. Despite their potential, the translation of PLGA NPs from laboratory-scale production to clinical applications remains a significant challenge.

View Article and Find Full Text PDF

Wheat germ is a byproduct of the cereal industry that contains high levels of protein, fiber, B vitamins, minerals, and other functional microcomponents. However, so far, few applications have been found in the meat industry despite the growing interest in replacing meat with vegetable proteins. Therefore, the use of wheat germ for the production of low-fat frankfurters was considered.

View Article and Find Full Text PDF

Inhibition of P2X7 receptor mitigates atrial fibrillation susceptibility in isoproterenol-induced rats.

Biochem Biophys Res Commun

January 2025

Department of Cardiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, PR China. Electronic address:

Background: Atrial fibrillation (AF) is a common cardiac arrhythmia that is characterized by atrial electrical remodeling. The P2X7 receptor (P2X7R), an ATP-gated ion channel, has been implicated in cardiovascular pathologies; however, its role in atrial electrical remodeling remains unclear. This study investigated whether inhibition of P2X7R could mitigate isoproterenol (ISO)-induced atrial electrical remodeling in rats and explored the underlying mechanisms.

View Article and Find Full Text PDF

Effect of by-products-based diet and intramuscular fat content on volatile compounds from pork.

Meat Sci

January 2025

Ghent University, Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Ghent, Belgium. Electronic address:

This study evaluated the effects of a fibre- and fat-rich by-products-based diet and the intramuscular fat (IMF) content on volatile compounds in pork. Meat samples were collected from sixteen gilts included in a feeding trial. Half of the animals were fed a conventional diet based on wheat, maize, barley and soybean meal, whereas the other half were fed a by-products-based diet that contained corn germ meal, malt sprouts, crispbread meal and proticorn, but no cereals or soya.

View Article and Find Full Text PDF

Turning Waste into Treasure: Functionalized Biomass-Derived Carbon Dots for Superselective Visualization and Eradication of Gram-Positive Bacteria.

Adv Sci (Weinh)

January 2025

State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing, 211189, P. R. China.

Gram-positive bacteria pose significant threats to human health, necessitating the development of targeted bacterial detection and eradication strategies. Nevertheless, current approaches often suffer from poor targeting specificity. Herein, the study utilizes purple rice lixivium to synthesize biomass carbon dots (termed BCDs) with wheat germ agglutinin-like residues for precisely targeting Gram-positive bacteria.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!