Introduction: Flaviviruses such as dengue virus (DENV), Zika virus (ZIKV), Japanese encephalitis virus (JEV), and Yellow fever virus (YFV) are mosquito-borne RNA viruses causing major public health threats in major parts of the world. While DENV and ZIKV have been detected in urine samples, data on the presence and stability of flaviviruses in the water environment are limited.

Methods: In this study, we determined the stability and infectivity of flavivirus in different water environments by utilizing RT-qPCR and plaque assay to explore the feasibility of environmental detection and surveillance of flaviviruses.

Results: Viral RNA could be detected for up to 49-days, at 4 °C, 25 °C and 37 °C temperatures, and infectious particles could be detected for up to 7 days. While our findings showed that flaviviral RNA has higher stability and better detection rates at lower temperatures, the infectious capacity of flaviviruses was comparatively short at 7 days.

Conclusions: Our results indicate that flaviviruses retains limited infectivity in general water environments and highlight the feasibility of detection and surveillance in various epidemiologic and environmental settings.

Download full-text PDF

Source
http://dx.doi.org/10.1186/s41182-025-00686-9DOI Listing

Publication Analysis

Top Keywords

water environments
12
stability infectivity
8
detection surveillance
8
temperatures infectious
8
assessment flavivirus
4
rna
4
flavivirus rna
4
stability
4
rna stability
4
water
4

Similar Publications

Background: Rice is a staple food for the global population. However, extreme weather events threaten the stability of the water supply for agriculture, posing a critical challenge to the stability of the food supply. The use of technology to assess the water status of rice plants enables the precise management of agricultural water resources.

View Article and Find Full Text PDF

Surface water chemistry of the River Ganga at Varanasi was analyzed at 10 locations over 3 years (2019-2021) across pre-monsoon, monsoon, and post-monsoon seasons. The study aimed to assess water parameters using principal component analysis (PCA), calculate the water quality index (WQI), determine processes governing water chemistry, evaluate irrigation suitability, and estimate non-carcinogenic health risks. The physical parameters measured included pH (8.

View Article and Find Full Text PDF

Background: Innovation in crop establishment is crucial for wheat productivity in drought-prone climates. Seedling establishment, the first stage of crop productivity, relies heavily on root and coleoptile system architecture for effective soil water and nutrient acquisition, particularly in regions practicing deep planting. Root phenotyping methods that quickly determine coleoptile lengths are vital for breeding studies.

View Article and Find Full Text PDF

Removal of Antibiotics in Breeding Wastewater Tailwater Using Microalgae-Based Process.

Bull Environ Contam Toxicol

January 2025

Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China.

Ciprofloxacin (CIP) and oxytetracycline (OTC) are commonly detected antibiotic species in breeding wastewater, and microalgae-based antibiotic treatment technology is an environmentally friendly and cost-effective method for its removal. This study evaluated the effects of CIP and OTC on Scenedesmus sp. in the breeding wastewater tailwater and the removal mechanisms of antibiotics.

View Article and Find Full Text PDF

The widespread application of swine-farming wastewater to soil and water is increasingly contributing to heavy metal contamination, posing significant environmental risks. This study investigated the concentrations of eight heavy metals in swine-farming wastewater following different treatment processes, and assessed their ecological risks in Sichuan Province, China. The findings revealed that zinc, copper and nickel exhibited the highest concentrations, potentially causing heavy or strong contamination levels and leading to heavy or slight ecological risks.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!