Background: Oxidized low-density lipoprotein (ox-LDL)-induced endothelial cell dysfunction plays a crucial role in the progression of atherosclerosis (AS). Although miR-125b-5p is known to be involved in cardiovascular and cerebrovascular disorders, its function in ox-LDL-induced endothelial injury is still not well understood.
Methods: An in vitro AS cell model was established by exposing human umbilical vein endothelial cells (HUVECs) to 100 µg/mL ox-LDL for 24 h. A series of functional assays, including CCK-8 assay, flow cytometry, MDA and SOD kits, capillary-like network formation assay and ELISA assay were performed in vitro. TNFSF4/TLR4/NF-κB pathway-related protein expressions were measured by Western blot. Molecular mechanisms were elucidated through quantitative real-time PCR, western blot analysis, and luciferase reporter assays.
Results: Our investigation revealed that exposure to ox-LDL led to a downregulation in miR-125b-5p, while upregulating the expression of tumor necrosis factor (ligand) superfamily, member 4 (TNFSF4), TLR4, p-p65 and p-IkBa in HUVECs in a dose-dependent manner. We confirmed TNFSF4 as a direct target of miR-125b-5p. Ox-LDL exposure led to decreased cell viability and angiogenic capacity, along with increased apoptosis, inflammation, and oxidative stress in HUVECs. These effects were reversed by overexpressing miR-125b-5p or knocking down TNFSF4. Overexpression of TNFSF4 significantly reversed the effects brought about by miR-125b-5p in HUVECs exposed to ox-LDL. Moreover, miR-125b-5p inactivated the TLR4/NF-κB signaling pathway by negatively regulating TNFSF4.
Conclusions: In summary, our findings demonstrate that miR-125b-5p possessed an anti-inflammatory and anti-apoptosis against ox-LDL-induced HUVEC injury by regulating the TNFSF4/TLR4/NF-κB signaling, indicating that miR-125b-5p may have an important therapeutic function for AS.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1186/s12896-025-00944-y | DOI Listing |
BMC Biotechnol
January 2025
Department of Emergency Medicine, Inner Mongolia People's Hospital, No. 20 Zhaowuda Road, Hohhot City, Inner Mongolia Autonomous Region, 010017, China.
Background: Oxidized low-density lipoprotein (ox-LDL)-induced endothelial cell dysfunction plays a crucial role in the progression of atherosclerosis (AS). Although miR-125b-5p is known to be involved in cardiovascular and cerebrovascular disorders, its function in ox-LDL-induced endothelial injury is still not well understood.
Methods: An in vitro AS cell model was established by exposing human umbilical vein endothelial cells (HUVECs) to 100 µg/mL ox-LDL for 24 h.
Sci Rep
January 2025
Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, US.
Little is known about how exclusive e-cigarette use affects exosomal microRNA (miRNA) expression, which is crucial in inflammation and disease processes like cancer. We compared exosomal miRNA profiles between exclusive e-cigarette users and non-users. We used plasma samples from 15 exclusive e-cigarette users and 15 non-users from the Population Assessment of Tobacco and Health (PATH) Wave 1 study (2013-2014) and sequenced miRNAs with Illumina NextSeq 500/550.
View Article and Find Full Text PDFBiomarkers
January 2025
Department of General Biology and Genomics, Institute of Cell Biology and Biotechnology, L.N. Gumilyov Eurasian National University, Astana 010008, Kazakhstan.
Background: Radon, a radioactive gas, is a significant risk factor for lung cancer, especially in non-smokers. This study examines the expression of exosomal microRNAs (miRNAs) as potential biomarkers for radon-induced effects.
Methods: A total of 109 participants from high- and low-radon areas in Kazakhstan were included.
Biomater Res
January 2025
Center for Plastic & Reconstructive Surgery, Department of Dermatology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, Zhejiang, China.
Cutaneous photoaging, induced by chronic exposure to ultraviolet (UV) radiation, typically manifests as alterations in both the physical appearance and functional properties of the skin and may predispose individuals to cancer development. Recent studies have demonstrated the reparative potential of exosomes derived from mesenchymal stem cells in addressing skin damage, while specific reports highlight their efficacy in ameliorating skin photoaging. However, the precise role of exosomes derived from human hair follicle mesenchymal stem cells (HFMSC-Exos) in the context of cutaneous photoaging remains largely unexplored.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Peking Union Medical College, Chinese Academy of Medical Science, Beijing 100010, China.
Osteoarthritis (OA), particularly in the knee and hip, poses a significant global health challenge due to limited therapeutic options. To elucidate the molecular mechanisms of OA and identify potential biomarkers and therapeutic targets, we utilized genome-wide association studies (GWAS) and cis-miRNA expression quantitative trait loci (cis-miR-eQTL) datasets to identify miRNAs associated with OA, revealing 16 that were linked to knee OA and 21 to hip OA. Among these, hsa-miR-1303 was significantly upregulated in both knee and hip OA (IVW: = 6.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!