Background: Obesity is a significant risk factor for severe acute pancreatitis (SAP) and is typically associated with increased intestinal permeability. Understanding the role of specific molecules can help reduce the risk of developing SAP. Claudin 11 (CLDN11), a member of the Claudin family, regulates the permeability of various internal barriers. However, the role and mechanism of CLDN11 in the intestinal permeability of obesity-related SAP remain unclear.

Methods: We evaluated intestinal permeability and the expression of CLDN11 in experimental obesity-related SAP. A recombinant adeno-associated virus carrying CLDN11 was used to treat experimental obesity-related SAP. The interaction between CLDN11 mRNA and insulin-like growth factor 2 mRNA-binding protein 3 (IGF2BP3) protein was predicted through bioinformatics analysis and validated by RNA immunoprecipitation and RNA pull-down assay. Additionally, tumor necrosis factor-α (TNF-α) treatment in Caco-2 cells was conducted, and the IGF2BP3/CLDN11 axis was detected. Moreover, we conducted anti-TNFα therapy and evaluated intestinal permeability and pancreatic inflammation in experimental obesity-related SAP.

Results: Downregulation of CLDN11 was observed in the intestinal epithelial cells of experimental obesity-related SAP. When the expression of CLDN11 in intestinal epithelial cells of experimental obesity-related SAP was increased exogenously, intestinal epithelial permeability and pancreatic inflammation were relieved. Overexpression of CLDN11 reduced the paracellular permeability of Caco-2 monolayer cells, while knockdown of CLDN11 increased it. IGF2BP3 bound to and regulated the stability of CLDN11 mRNA. TNF-α treatment downregulated IGF2BP3 and CLDN11 in vitro. Anti-TNFα therapy reduced intestinal permeability, alleviated pancreatitis, and improved the expression of IGF2BP3 and CLDN11 in intestinal epithelial cells in experimental obesity-related SAP.

Conclusion: CLDN11 regulates intestinal permeability in obesity-related SAP. Mechanistically, an increase in TNF-α impaired the stability of IGF2BP3-dependent CLDN11 mRNA in obesity-related SAP.

Download full-text PDF

Source
http://dx.doi.org/10.1186/s10020-025-01078-9DOI Listing

Publication Analysis

Top Keywords

intestinal permeability
28
obesity-related sap
28
experimental obesity-related
24
cldn11 mrna
16
intestinal epithelial
16
cldn11
15
permeability obesity-related
12
cldn11 intestinal
12
epithelial cells
12
cells experimental
12

Similar Publications

Introduction: Non-Celiac Gluten Sensitivity (NCGS) is a common disorder characterized by symptoms resembling those of irritable bowel syndrome. In recent years there has been progress in the understanding of the pathogenic pathways and data suggest that NCGS has a distinct immunological profile that differs from celiac disease (CeD). This has fostered the search for a specific biomarker of NCGS.

View Article and Find Full Text PDF

There are limited studies on the improvement of leaky gut with minor inflammation associated with various diseases. To explore the therapeutic potential of Lactiplantibacillus plantarum 22 A-3, a member of the Lactobacillus species, in addressing a leaky gut. Lactiplantibacillus plantarum 22 A-3 was administered to a leaky gut mice model with low dextran sulfate sodium concentrations.

View Article and Find Full Text PDF

Background: Methylglyoxal (MGO), a highly reactive precursor of advanced glycation end products (AGEs), is endogenously produced and prevalent in various ultra-processed foods. MGO has emerged as a significant precursor implicated in the pathogenesis of type 2 diabetes and neurodegenerative diseases. To date, the effects of dietary MGO on the intestine have been limited explored.

View Article and Find Full Text PDF

Fucoidan Oligosaccharide Supplementation Relieved Kidney Injury and Modulated Intestinal Homeostasis in D-Galactose-Exposed Rats.

Nutrients

January 2025

Department of Biochemistry and Molecular Biology, School of Basic Medicine, Qingdao University, 308 Ningxia Road, Qingdao 266071, China.

A fucoidan oligosaccharide (FOS), a potent compound derived from algae, is known for its diverse biological activities, including prebiotic activity, anticancer activity, and antioxidative properties, and has demonstrated supportive therapeutic effects in treating kidney ailments. This study was conducted to explore the protective influence of FOS on kidney damage due to aging induced by D-galactose in Sprague Dawley (SD) rats. The low-dose FOS group was administered FOS (100 mg/kg) by gavage, and the high-FOS group received FOS (200 mg/kg) by gavage.

View Article and Find Full Text PDF

Background/objectives: Ulcerative colitis (UC) is a chronic and easily recurrent inflammatory bowel disease. The gut microbiota and plasma metabolites play pivotal roles in the development and progression of UC. Therefore, therapeutic strategies targeting the intestinal flora or plasma metabolites offer promising avenues for the treatment of UC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!