Differentiating between diabetic nephropathy (DN) and non-diabetic renal disease (NDRD) without a kidney biopsy remains a major challenge, often leading to missed opportunities for targeted treatments that could greatly improve NDRD outcomes. To reform the traditional biopsy-all diagnostic paradigm and avoid unnecessary biopsy, we developed a transformer-based deep learning (DL) system for detecting DN and NDRD upon non-invasive multi-modal data of fundus images and clinical characteristics. Our Trans-MUF achieved an AUC of 0.980 (95% CI: 0.979 to 0.980) over the internal retrospective set and also had superior generalizability over a prospective dataset (AUC: 0.989, 95% CI: 0.987 to 0.990) and a multicenter, cross-machine and multi-operator dataset (AUC: 0.932, 95% CI: 0.931 to 0.939). Moreover, the nephrologists' diagnosis accuracy can be improved by 21%, through visualization assistance of the DL system. This paper lays a foundation for automatically differentiating DN and NDRD without biopsy. (Registry name: Correlation Study Between Clinical Phenotype and Pathology of Type 2 Diabetic Nephropathy. ID: NCT03865914. Date: 2017-11-30).

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41746-024-01393-1DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11759696PMC

Publication Analysis

Top Keywords

diabetic nephropathy
12
dataset auc
8
multimodal transformer
4
transformer system
4
system noninvasive
4
noninvasive diabetic
4
nephropathy diagnosis
4
diagnosis retinal
4
retinal imaging
4
imaging differentiating
4

Similar Publications

The causal association between cardiovascular proteins and diabetic nephropathy: a Mendelian randomization study.

Int Urol Nephrol

January 2025

Department of Nephrology, Jiangxi Medical College, The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China.

Purpose: To clarify the causal association between cardiovascular proteins and diabetic nephropathy (DN) in Europeans.

Methods: The large genome-wide association study data of cardiovascular proteins and DN were used for this two-sample Mendelian randomization (MR) analysis. We took the Inverse variance weighted (IVW) as the primary method.

View Article and Find Full Text PDF

Introduction: Acute kidney injury involves inflammation and intrinsic renal damage, and is a common complication of severe coronavirus disease 2019 (COVID-19). Baseline chronic kidney disease (CKD) confers an increased mortality risk. We determined the renal long-term outcomes of COVID-19 in patients with baseline CKD, and the risk factors prompting renal replacement therapy (RRT) initiation and mortality.

View Article and Find Full Text PDF

Background: Although recent progress provides mechanistic insights into diabetic nephropathy (DN), effective treatments remain scarce. DN, characterized by proteinuria and a progressive decline in renal function, primarily arises from podocyte injury, which impairs the glomerular filtration barrier. Wogonoside, a bioactive compound from the traditional Chinese herb Scutellaria baicalensis, has not been explored for its role in DN.

View Article and Find Full Text PDF

Integrated metabolomics and mass spectrometry imaging analysis reveal the efficacy and mechanism of Huangkui capsule on type 2 diabetic nephropathy.

Phytomedicine

January 2025

State key laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China; Department of Nephrology, Nephrology Institute of the Chinese People's Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, First Medical Center of Chinese PLA General Hospital, Beijing 100853, China. Electronic address:

Background: Huangkui capsule (HKC), a Chinese patent medicine, is clinically used for treating diabetic nephropathy. However, the core disease-specific biomarkers and targets of type 2 diabetic nephropathy (T2DN) and the therapeutic mechanism of HKC are not fully elucidated.

Purpose: This study aimed to investigate the therapeutic effects and underlying molecular mechanisms of HKC for T2DN.

View Article and Find Full Text PDF

Both type 1 and type 2 diabetes can lead to diabetic nephropathy (DN), a serious microvascular complication. Bromodomain 4 (BRD4), a member of the BET protein family, has been linked to various diseases, including cancer, inflammation, and fibrosis, and may be involved in the development of diabetes and its complications. In this study, we first explored the role and mechanism of BRD4 in DN.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!