Selecting channels for motor imagery (MI)-based brain-computer interface (BCI) systems can not only enhance the portability of the systems, but also improve the decoding performance. Hence, we propose a cross-domain-based channel selection (CDCS) approach, which effectively minimizes the number of EEG channels used while maintaining high accuracy in MI recognition. The EEG source imaging (ESI) technique is employed to map scalp EEG into the cortical source domain. We divide the equivalent dipoles in the source domain into different regions by k-means clustering. Then, we calculate the band energy (5-40 Hz) of time series of dipoles in these regions by power spectral density (PSD), and the regions with the highest and lowest band energy are selected as the region of interests (ROIs) in the source domain. Subsequently, Pearson correlation coefficients between the dipole time series in ROIs and scalp EEG are used as the criterion for channel selection and a multi-trial-sorting-based channel selection strategy is proposed. Finally, we propose the CDCS-based MI classification framework, where common spatial pattern is applied to extract features and linear discriminant analysis is used to identify MI tasks. The CDCS method demonstrated significant improvement in decoding accuracy on two public datasets, achieving increases of 18.51% and 13.37% compared to all-channel method, and 10.74% and 3.43% compared to the three-channel method. The experimental results validated that CDCS is effective in selecting important channels.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11517-025-03298-x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!