Angio-based microvascular resistance (AMR) as a potential alternative to the index of microcirculatory resistance (IMR) and its relationship with microvascular obstruction (MVO) and other cardiac magnetic resonance (CMR) parameters still lacks comprehensive validation. This study aimed to validate the correlation between AMR and CMR-derived parameters and to construct an interpretable machine learning (ML) model, incorporating AMR and clinical data, to forecast MVO in ST-segment elevation myocardial infarction (STEMI) patients undergoing primary percutaneous coronary intervention (PPCI). We enrolled 452 STEMI patients from Nanjing Drum Tower Hospital between 2018 and 2022, who received both PPCI and CMR. After PPCI, AMR measurements and CMR-derived parameters were recorded, and clinical data were gathered. The ML workflow comprised feature selection using the Boruta algorithm, model construction with seven classifiers, hyperparameter optimization via ten-fold cross-validation, model comparison based on the area under the curve (AUC), and a Shapley additive explanations (SHAP) analysis to analyze the significance of different features. 32.29% of patients showed inconsistency between AMR and MVO, but we successfully constructed a predictive model for MVO. Among the classifiers, Extreme gradient boosting (XGBoost) post hyperparameter optimization displayed superior performance, achieving an AUC of 0.911 and 0.846 in the training and validation sets, respectively. SHAP analysis identified AMR as a pivotal predictor of MVO. Although we observed the inconsistency between AMR and MVO but the ML-based construction of MVO prediction model is feasible, which brings the possibility of timely prediction of patients with MVO and timely imposition of interventions during PPCI.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41598-025-87828-5DOI Listing

Publication Analysis

Top Keywords

clinical data
12
microvascular obstruction
8
angio-based microvascular
8
microvascular resistance
8
percutaneous coronary
8
coronary intervention
8
machine learning
8
learning model
8
mvo
8
cmr-derived parameters
8

Similar Publications

Identification of an ANCA-associated vasculitis cohort using deep learning and electronic health records.

Int J Med Inform

January 2025

Rheumatology and Allergy Clinical Epidemiology Research Center and Division of Rheumatology, Allergy, and Immunology, and Mongan Institute, Department of Medicine, Massachusetts General Hospital Boston MA USA. Electronic address:

Background: ANCA-associated vasculitis (AAV) is a rare but serious disease. Traditional case-identification methods using claims data can be time-intensive and may miss important subgroups. We hypothesized that a deep learning model analyzing electronic health records (EHR) can more accurately identify AAV cases.

View Article and Find Full Text PDF

Background: Clinical practice is key in the development and enhancement of the professional competencies for Master of Nursing Specialist postgraduates in anesthesia; however, there is a lack of unified and standardized clinical practice training programs in China, failing to guarantee teaching quality among institutions.

Objective: To understand perceptions of the clinical practice training program setting for Master of Nursing Specialist postgraduates in anesthesia from the dual perspectives of faculty and students.

Design: A qualitative descriptive study.

View Article and Find Full Text PDF

The Association of Psychological Factors With Willingness to Share Health-Related Data From Technological Devices: Cross-Sectional Questionnaire Study.

JMIR Form Res

January 2025

Department of Medical and Clinical Psychology, Center of Research on Psychological Disorders and Somatic Diseases (CoRPS), Tilburg University, Tilburg, the Netherlands, 31 134662142.

Background: Health-related data from technological devices are increasingly obtained through smartphone apps and wearable devices. These data could enable physicians and other care providers to monitor patients outside the clinic or assist individuals in improving lifestyle factors. However, the use of health technology data might be hampered by the reluctance of patients to share personal health technology data because of the privacy sensitivity of this information.

View Article and Find Full Text PDF

Background: The application of natural language processing in medicine has increased significantly, including tasks such as information extraction and classification. Natural language processing plays a crucial role in structuring free-form radiology reports, facilitating the interpretation of textual content, and enhancing data utility through clustering techniques. Clustering allows for the identification of similar lesions and disease patterns across a broad dataset, making it useful for aggregating information and discovering new insights in medical imaging.

View Article and Find Full Text PDF

Background: Paracoccidioidomycosis (PCM) is a systemic mycosis endemic and limited to Latin America. Brazil is responsible for more than 80% of diagnosed cases in the world. Since PCM is not a notifiable disease, there are still no accurate data on its incidence in Brazil.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!