Cilia are motile or sensory organelles present on many eukaryotic cells. Their formation and function rely on axonemal microtubules, which exhibit very slow dynamics, but the underlying mechanisms are largely unexplored. Here we reconstituted in vitro the individual and collective activities of the ciliary tip module proteins CEP104, CSPP1, TOGARAM1, ARMC9 and CCDC66, which interact with each other and with microtubules and, when mutated in humans, cause ciliopathies such as Joubert syndrome. We show that CEP104, a protein with a tubulin-binding TOG domain, and its luminal partner CSPP1 inhibit microtubule growth and shortening. Another TOG-domain protein, TOGARAM1, overcomes growth inhibition imposed by CEP104 and CSPP1. CCDC66 and ARMC9 do not affect microtubule dynamics but act as scaffolds for their partners. Cryo-electron tomography demonstrated that, together, ciliary tip module members form plus-end-specific cork-like structures that reduce protofilament flaring. The combined effect of these proteins is very slow processive microtubule elongation, which recapitulates axonemal dynamics in cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41594-025-01483-y | DOI Listing |
Nat Struct Mol Biol
January 2025
Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands.
Cilia are motile or sensory organelles present on many eukaryotic cells. Their formation and function rely on axonemal microtubules, which exhibit very slow dynamics, but the underlying mechanisms are largely unexplored. Here we reconstituted in vitro the individual and collective activities of the ciliary tip module proteins CEP104, CSPP1, TOGARAM1, ARMC9 and CCDC66, which interact with each other and with microtubules and, when mutated in humans, cause ciliopathies such as Joubert syndrome.
View Article and Find Full Text PDFJ Cell Biol
March 2025
Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands.
Centrioles are microtubule-based organelles required for the formation of centrosomes and cilia. Centriolar microtubules, unlike their cytosolic counterparts, are stable and grow very slowly, but the underlying mechanisms are poorly understood. Here, we reconstituted in vitro the interplay between the proteins that cap distal centriole ends and control their elongation: CP110, CEP97, and CPAP/SAS-4.
View Article and Find Full Text PDFNat Commun
January 2025
Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki, Aichi, Japan.
DNA-nanoparticle motor is a burnt-bridge Brownian ratchet moving on RNA-modified surface driven by Ribonuclease H (RNase H), and one of the fastest nanoscale artificial motors. However, its speed is still much lower than those of motor proteins. Here we resolve elementary processes of motion and reveal long pauses caused by slow RNase H binding are the bottleneck.
View Article and Find Full Text PDFInt J Mol Sci
November 2024
Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia.
The mechanism of transcription proceeds through the formation of R-loop structures containing a DNA-RNA heteroduplex and a single-stranded DNA segment that should be placed inside the elongation complex; therefore, these nucleic acid segments are limited in length. The attachment of each nucleotide to the 3' end of an RNA strand requires a repeating cycle of incoming nucleoside triphosphate binding, catalysis, and enzyme translocation. Within these steps of transcription elongation, RNA polymerase sequentially goes through several states and is post-translocated, catalytic, and pre-translocated.
View Article and Find Full Text PDFElife
October 2024
Department of Chemistry, University of Alabama at Birmingham, Birmingham, United States.
ClpB and Hsp104 are AAA+ motor proteins essential for proteome maintenance and thermal tolerance. ClpB and Hsp104 have been proposed to extract a polypeptide from an aggregate and processively translocate the chain through the axial channel of its hexameric ring structure. However, the mechanism of translocation and if this reaction is processive remains disputed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!