The current study uses the Chernobyl disaster optimizer (CDO), a new metaheuristic optimizer, to identify the seven unknown parameters of solid oxide fuel cells (SOFCs). The procedures of the CDO is based on physical behavior of the elaborated radiations from the well-known Chernobyl disaster according to their mass, speed, frequency, and degree of ionization. The sum of square errors (SMSE) among the estimated and the real measured output voltage datasets of SOFCs is minimized employing the CDO. Set of boundaries of the SOFC's process is taken into consideration with the problem formulation. SOFCs stack's model is examined at 800C and 900C and its performance is confirmed. The CDO extracts more precise SOFCs' parameters compared to other competitors. The CDO's convergence patterns and the SOFCs unit's performance are studied and proved at steady-state by comparing its results to a number of recognized algorithms under varied operating scenarios. A significant SMSE's values of 3.46 µV and 7.38 µV are attained at 800C and 900C, respectively by the CDO. As a result, the polarization principal curves of the measured and estimated voltage datasets are checked and verified with very close matching. The dynamic behavior of the SOFCs stack is examined in relation to direct load, electric networks, and superconducting magnetic energy storage devices (SMES) for additional validation and illustration. The role of the SOFCs stack in controlling the active and reactive power delivered to the network and direct load is investigated using two controllers: one to control the inverter, which converts the SOFC's dc output to the main network, and the other to control the SMES. The Simulink/MATLAB environment is used to indicate the validity of the proposed framework under both steady-state and dynamical conditions. The comprehensive assessments show that the CDO capabilities are very effective when used with microgrids.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41598-025-86493-y | DOI Listing |
Sci Rep
January 2025
Department of Electrical Engineering, Faculty of Engineering, Mansoura University, Mansoura, Egypt.
The current study uses the Chernobyl disaster optimizer (CDO), a new metaheuristic optimizer, to identify the seven unknown parameters of solid oxide fuel cells (SOFCs). The procedures of the CDO is based on physical behavior of the elaborated radiations from the well-known Chernobyl disaster according to their mass, speed, frequency, and degree of ionization. The sum of square errors (SMSE) among the estimated and the real measured output voltage datasets of SOFCs is minimized employing the CDO.
View Article and Find Full Text PDFPLoS One
December 2024
Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States of America.
Environmental contamination can have lasting impacts on surrounding communities, though the long-term impacts can be difficult to ascertain. The disaster at the Chornobyl Nuclear Power Plant in 1986 and subsequent remediation efforts resulted in contamination of the local environment with radioactive material, heavy metals, and additional environmental toxicants. Many of these are mutagenic in nature, and the full effect of these exposures on local flora and fauna has yet to be understood.
View Article and Find Full Text PDFProbl Radiac Med Radiobiol
December 2024
State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Yuriia Illienka Str., Kyiv, 04050, Ukraine.
Objective: to study the features of cognitive disorders in the remote period following exposure to ionizing radiation (IR) in the elderly participants of the liquidation of the consequences of the Chornobyl NPP accident (Chornobyl clean-up workers) with chronic cerebrovascular disorders.
Materials And Methods: The retrospective and prospective cohort study with the external and internal controlgroups. The randomized sample of the male elderly participants (attained age more than 60 years old) in liquidationof the consequences of the accident (Chornobyl clean-up workers, liquidators) at the Chornobyl nuclear power plant(ChNPP) in 1986-1987 (main group, n = 52) recruited from the Clinico-epidemiological registry (CER) of StateInstitution «National Research Center for Radiation Medicine, Hematology and Oncology of The National Academyof Medical Sciences of Ukraine» (NRCRMHO) with verified chronic cerebrovascular disorders (CVD) was examined.
Probl Radiac Med Radiobiol
December 2024
State Institution «National Research Center of Radiation Medicine, Hematology and Oncology of the National Academy of Medical Sciences of Ukraine», 53 Yuriia Illienka Str., Kyiv, 04050, Ukraine.
Objective: to conduct a clinical and neurophysiological study of Chornobyl clean-up workers and military personnelof the Armed Forces of Ukraine (AFU) with previous coronavirus disease (COVID-19) and individuals of the comparison groups to study the impact of long-term effects of ionizing radiation, psychoemotional stress and previouscoronavirus infection on cerebral functioning.
Materials And Methods: A prospective clinical study of Chornobyl clean-up workers and servicemen of the ArmedForces of Ukraine (AFU) who had coronavirus disease (COVID-19) and individuals of the comparison groups. Themain group - 30 males participated in liquidating the consequences of the Chornobyl Nuclear Power Plant (ChNPP)accident with previously verified COVID-19 (Chornobyl clean-up workers).
Probl Radiac Med Radiobiol
December 2024
State Institution «National Scientific Center for Radiation Medicine, Hematology and Oncology of the National Academy of Medical Sciences of Ukraine», 53 Yuriia Illienka Str., Kyiv, 04050, Ukraine.
Unlabelled: The emergency destruction of the 4th reactor of the Chornobyl nuclear power plant necessitated large-scale emergency work, which involved large contingents of specialists. Analysis the mortality of Chornobyl clean-up workers isan important and relevant basis for planning medical protection measures in conditions of a potential threat ofemergency and other radiation situations.The objective of this work is to determine the levels and relative risks of mortality of Chornobyl clean-up workers in1986-1987 years from major non-tumor diseases depending on the received dose of radiation exposure, taking intoaccount age and time after the accident (period of epidemiological studies 1988-2021).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!