Gastrin-releasing peptide receptor (GRPR), overexpressed in various cancers, is a promising target for positron emission tomography (PET). This systematic review investigated the diagnostic value of GRPR-targeted PET imaging in oncology. A systematic search was conducted on major medical databases until May 23, 2024. Keywords were modified to include clinical original studies on GRPR-targeted PET in cancer patients. Out of 1624 searched studies initially, 107 were eligible for the full-text review. Overall, data from 38 studies met inclusion criteria, investigating GRPR-targeting radiotracers in breast cancer, prostate cancer, gastrointestinal stromal tumours (GIST) and gliomas (including optic pathway glioma and glioblastoma multiforme). In breast cancer, GRPR-targeted PET effectively detected primary tumours and metastases, particularly in estrogen receptor (ER)-positive patients, and predicted treatment response. In prostate cancer, high sensitivity (up to 88%) and specificity (up to 90%) for detecting primary tumours were observed, providing added value when combined with magnetic resonance imaging (MRI). In biochemical recurrence, sites of prostate cancer were identified even at PSA levels below 0.5ng/dL. Compared with PSMA PET, GRPR-targeted PET showed comparable or superior detection rates. Considering GIST, GRPR-targeted PET imaging proved to be a valuable diagnostic tool, particularly when [F] FDG PET results were inconclusive. Regarding gliomas, GRPR-targeted PET achieved a 100% detection rate (MRI reference), aiding localization, preoperative planning, and differentiation between recurrence and malignant transformation. GRPR-targeted PET shows promise in improving cancer diagnostics, particularly in ER-positive breast cancer, prostate cancer, and gliomas, and may enhance clinical decision-making.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1053/j.semnuclmed.2025.01.001 | DOI Listing |
Semin Nucl Med
January 2025
Division of Molecular Imaging and Theranostics, Department of Nuclear Medicine, University Hospital, Paracelsus Medical University, Salzburg, Austria. Electronic address:
Gastrin-releasing peptide receptor (GRPR), overexpressed in various cancers, is a promising target for positron emission tomography (PET). This systematic review investigated the diagnostic value of GRPR-targeted PET imaging in oncology. A systematic search was conducted on major medical databases until May 23, 2024.
View Article and Find Full Text PDFTheranostics
December 2024
Department of Nuclear Medicine, Inselspital, University of Bern, Bern, Switzerland.
Radiopharmaceutical therapy (RPT) is an emerging prostate cancer treatment that delivers radiation to specific molecules within the tumor microenvironment (TME), causing DNA damage and cell death. Given TME heterogeneity, it's crucial to explore RPT dosimetry and biological impacts at the cellular level. We integrated spatial transcriptomics (ST) with computational modeling to investigate the effects of RPT targeting prostate-specific membrane antigen (PSMA), fibroblast activation protein (FAP), and gastrin-releasing peptide receptor (GRPR) each labelled with beta-emitting lutetium-177 (Lu) and alpha-emitting actinium-225 (Ac).
View Article and Find Full Text PDFMol Pharm
December 2024
Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, British Columbia V5Z 1L3, Canada.
The gastrin-releasing peptide receptor (GRPR) is overexpressed in a variety of cancers and represents a promising target for diagnosis and therapy. However, the extremely high accumulation in the pancreas observed for most of the clinically evaluated GRPR-targeted radiopharmaceuticals could limit their applications. In this study, we synthesized one GRPR antagonist (ProBOMB5) and two GRPR agonists (LW02056 and LW02057) by replacing the 4-thiazolidinecarboxylic acid (Thz) residue in our previously reported GRPR-targeted tracers with Pro.
View Article and Find Full Text PDFAnn Nucl Med
November 2024
Department of Radiology, Mayo Clinic, Rochester, MN, USA.
Mol Pharm
September 2024
Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
The high incidence and heavy disease burden of prostate cancer (PC) require accurate and comprehensive assessment for appropriate disease management. Prostate-specific membrane antigen (PSMA) positron emission tomography (PET) cannot detect PSMA-negative lesions, despite its key role in PC disease management. The overexpression of gastrin-releasing peptide receptor (GRPR) in PC lesions reportedly performs as a complementary target for the diagnosis and therapy of PC.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!