The transgenic MutaMouse hepatocyte mutation assay in vitro: Mutagenicity and mutation spectra of six substances with different mutagenic mechanisms.

Mutat Res Genet Toxicol Environ Mutagen

Free University of Berlin, Institute of Pharmacy, Pharmacology and Toxicology, Berlin, Germany; BASF SE, Experimental Toxicology and Ecology, Ludwigshafen am Rhein, Germany.

Published: January 2025

Mutagenicity testing is a component of the hazard assessment of industrial chemicals, biocides, and pesticides. Mutations induced by test substances can be detected by in vitro and in vivo methods that have been adopted as OECD Test Guidelines. One of these in vivo methods is the Transgenic Rodent Assay (TGRA), OECD test guideline no. 488. An analogous in vitro TGRA has been described, but experience with this test method is limited. In this study, six in vivo TGRA positive mutagens were tested in the in vitro TGRA based on primary MutaMouse hepatocytes. In addition to the functional read-out of the lacZ reporter gene, induced mutations were analysed by next-generation sequencing (NGS). Five of the six in vivo TGRA positive mutagens (N-ethyl-N-nitrosourea (ENU), ethyl methanesulfonate (EMS), mitomycin C (MMC), benzo[a]pyrene (B[a]P), and azathioprine (AZA), but not cyproterone acetate) mutated the lacZ gene in vitro. NGS identified mutations which matched the mutagenic mechanisms described in the literature. The alkylating agent ENU induced a greater proportion of A:T to T:A transversions than did the other alkylating agent, EMS, whereas EMS increased smaller deletions (1-4 bp). G:C to T:A transversions accounted for the majority of mutations identified after treatments with MMC and B[a]P, both of which form monoadducts at the guanine N2 position. AZA induced mainly G:C to A:T transitions, explained by the structural similarity of one of its metabolites to guanine. An increased proportion of mid-size changes (0.3-2.5 kb) was detected only for the crosslinking mutagen MMC. The in vitro TGRA based on primary MutaMouse hepatocytes is a promising in vitro assay for the assessment of mutation induction, reflecting many aspects of the corresponding in vivo TGRA and allowing for mutation spectra analysis to evaluate the induced mutations.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mrgentox.2024.503836DOI Listing

Publication Analysis

Top Keywords

vitro tgra
12
vivo tgra
12
mutation spectra
8
mutagenic mechanisms
8
vivo methods
8
oecd test
8
tgra positive
8
positive mutagens
8
tgra based
8
based primary
8

Similar Publications

The transgenic MutaMouse hepatocyte mutation assay in vitro: Mutagenicity and mutation spectra of six substances with different mutagenic mechanisms.

Mutat Res Genet Toxicol Environ Mutagen

January 2025

Free University of Berlin, Institute of Pharmacy, Pharmacology and Toxicology, Berlin, Germany; BASF SE, Experimental Toxicology and Ecology, Ludwigshafen am Rhein, Germany.

Mutagenicity testing is a component of the hazard assessment of industrial chemicals, biocides, and pesticides. Mutations induced by test substances can be detected by in vitro and in vivo methods that have been adopted as OECD Test Guidelines. One of these in vivo methods is the Transgenic Rodent Assay (TGRA), OECD test guideline no.

View Article and Find Full Text PDF

Individual and combined mechanistic toxicity of sulfonamides and their implications for ecological risk assessment in the Three Gorges Reservoir Area (TGRA), China.

J Hazard Mater

January 2020

Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; University of Chinese Academy of Sciences, Beijing, 100049, China; College of Life Science, Henan Normal University, Xinxiang, 453007, China. Electronic address:

Sulfonamides (SAs) are conventional veterinary antibiotics that pose ecological risks in the aquatic environment. This study aims to evaluate the environmental concerns of SAs in the Three Gorges Reservoir Area (TGRA) and their toxicogenetic implications. Here, we employed various in vitro and in vivo bioassays to determine the combine toxicogenetic effects of SAs, which were further confirmed through applying Combination Index (CI) and Independent Action (IA) models.

View Article and Find Full Text PDF

Mechanistic toxicity of DEHP at environmentally relevant concentrations (ERCs) and ecological risk assessment in the Three Gorges Reservoir Area, China.

Environ Pollut

November 2018

Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; College of Life Science, Henan Normal University, Xinxiang 453007, China. Electronic address:

Di-(2-ethylhexyl) phthalate (DEHP) associated in vitro/vivo toxicity at current environmentally relevant concentration (ERC) with attendant ecological risks in the Three Gorges Reservoir Area (TGRA) is still elusive. Responding to this challenge, a novel integrated study based on analytical and biological assays was designed to elucidate the underlying mechanisms for toxicity of DEHP and its ecological risks at ERC. In this study, GC-MS analysis showed that the highest environmental concentration of DEHP in the TGRA surface water was nearly double that of WHO and USEPA standards.

View Article and Find Full Text PDF

The peripheral blood mononuclear cells (PBMC) from 5 individuals immune to typhus group rickettsiae and from 13 nonimmune individuals were stimulated in vitro for 7 days with typhus group rickettsial antigen (TGRA). At the end of day 7, lysis of the natural killer (NK)-susceptible target K562 by these PBMC was determined. As controls, PBMC from both groups of donors were cultured in vitro for 7 days without antigen or were freshly isolated, and lysis of the K562 target was determined.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!