This paper is aimed at Cell Site Analysis Expert Witnesses. Ground Truth Data (GTD) are essential to validation exercises, but in the UK access to practitioner-generated Call Data Records (the traces considered by Cell Site Analysis experts) are restricted, reducing opportunities for practitioners to test their understanding against real-world data. This paper outlines methods by which casework material might be used to potentially detect issues within understanding of uncertainties (and therefore improve the reliability of analyses) by reviewing the properties of casework material in parallel with the casework assessment being conducted. Four case examples are given in which assessments of the reliability of understanding of uncertainties are tested (two examples for assessing Call Data Record GPRS time uncertainties, one for reliability of survey results and one for assessing the reliability of "geo" data from Encrochat examinations). The methods proposed are intended to provide a deeper layer of Quality Assurance; they are not intended to replace validation using GTD.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scijus.2024.12.002DOI Listing

Publication Analysis

Top Keywords

cell site
12
site analysis
12
call data
8
casework material
8
understanding uncertainties
8
data
5
analysis testing
4
understanding
4
testing understanding
4
understanding internal
4

Similar Publications

Cerebral ischemic stroke, neuronal death, and inflammation bring difficulties in neuroprotection and rehabilitation. In this study, we developed and designed the ability of natural lactoferrin-polyethylene glycol-polyphenylalanine-baicalein nanomicelles (LF-PEG-PPhe-Bai) to target and reduce these pathological processes, such as neurological damage and cognitive impairment in the stages of poststroke. Nanomicelles made from biocompatible materials have improved bioavailability and targeted distribution to afflicted brain areas.

View Article and Find Full Text PDF

Lineage tracing studies suggest that the placenta is not a de novo source of hematopoietic stem cells.

PLoS Biol

January 2025

Cardiovascular Institute and Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America.

Definitive hematopoietic stem and progenitor cells (HSPCs) arise from a small number of hemogenic endothelial cells (HECs) within the developing embryo. Understanding the origin and ontogeny of HSPCs is of considerable interest and potential therapeutic value. It has been proposed that the murine placenta contains HECs that differentiate into HSPCs.

View Article and Find Full Text PDF

Enzyme-enzyme interactions are fundamental to the function of cells. Their atomistic mechanisms remain elusive mainly due to limitations of in-cell measurements. We address this challenge by atomistically modeling, for a total of ≈80 μs, a slice of the human cell cytoplasm that includes three successive enzymes along the glycolytic pathway: glyceraldehyde-3-phosphate dehydrogenase (GAPDH), phosphoglycerate kinase (PGK), and phosphoglycerate mutase (PGM).

View Article and Find Full Text PDF

Stereocaulon alpinum has been found to have potential pharmaceutical properties due to the presence of secondary metabolites such as usnic acid, atranorin, and lobaric acid (LA) which have anticancer activity. On the other hand, the effect of LA on the stemness potential of colorectal cancer (CRC) cells remains unexplored, and has not yet been thoroughly investigated. In this study, we examined the inhibitory activity of LA from Stereocaulon alpinum against the stemness potential of CRC cells and investigated the possible underlying mechanisms.

View Article and Find Full Text PDF

Insight into the Mechanism of d-Glucose Accelerated Exchange in GLUT1 from Molecular Dynamics Simulations.

Biochemistry

January 2025

BHF Centre of Research Excellence, School of Medicine and Life Sciences, King's College London, London SE1 9NH, United Kingdom.

Transmembrane glucose transport, facilitated by glucose transporters (GLUTs), is commonly understood through the simple mobile carrier model (SMCM), which suggests that the central binding site alternates exposure between the inside and outside of the cell, facilitating glucose exchange. An alternative "multisite model" posits that glucose transport is a stochastic diffusion process between ligand-operated gates within the transporter's central channel. This study aims to test these models by conducting atomistic molecular dynamics simulations of multiple glucose molecules docked along the central cleft of GLUT1 at temperatures both above and below the lipid bilayer melting point.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!