As a biocatalyst, laccase has been widely studied and applied in the papermaking industry. However, the low catalytic efficiency and poor stability of natural laccase limit its application in the pulping process. To develop the laccase with high activity and strong tolerance, we carried out directed evolution for modification of the laccase derived from and screened out the mutants F282L/F306L and Q275P from the random mutant library by high-throughput screening. The specific activities of F282L/F306L and Q275P were 280.87 U/mg and 453.94 U/mg, respectively, which were 1.42 times and 2.30 times that of the wild-type laccase. Q275P demonstrated significantly improved thermal stability, with the relative activity 20% higher than that of the wild-type laccase after incubation at 40 ℃, 50 ℃, and 70 ℃ for 4 h. F282L/F306L and Q275P showed greater tolerance to metal ions and organic solvents than the wild-type laccase. The value of the wild-type laccase was 374.97 μmo/L, and those of F282L/F306L and Q275P were reduced to 318.96 μmo/L and 360.71 μmo/L, respectively, which suggested that the substrate affinity of laccase was improved after mutation. The values of F282L/F306L and Q275P for the substrate ABTS were 574.00 s and 898.03 s, respectively, which were 1.1 times and 1.7 times that of the wild-type laccase, indicating the improved catalytic efficiency. Q275P demonstrated better performance than the wild-type laccase in pulping, as manifested by the reduction of 0.82 in the Kappa number and the increases of 2.00% ISO, 7.8%, and 7.2% in whiteness, tensile index, and breaking length, respectively. This work lays a foundation for improving the adaptation of laccase to the environment of the papermaking industry.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.13345/j.cjb.240387 | DOI Listing |
Int J Mol Sci
January 2025
Departamento de Micro y Nanotecnologías, Instituto de Ciencias Aplicadas y Tecnología, Universidad Nacional Autónoma de México, Cto. Exterior S/N, C.U., Coyoacán, Ciudad de México C.P. 04510, Mexico.
Thermus thermophilus HB27 laccase (Tth-Lac) is a thermostable enzyme that contains a β-hairpin (Ala292-Gln307) covering the substrate entrance. We analyzed the role of this β-hairpin in the enzymatic activity of Tth-Lac through three β-hairpin mutants: two variants without the β-hairpin (C1Tth-Lac and C2Tth-Lac) and one with a partially modified β-hairpin (P1Tth-Lac). Enzymatic activity was assayed with different substrates with and without copper.
View Article and Find Full Text PDFSheng Wu Gong Cheng Xue Bao
January 2025
State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan 430062, Hubei, China.
As a biocatalyst, laccase has been widely studied and applied in the papermaking industry. However, the low catalytic efficiency and poor stability of natural laccase limit its application in the pulping process. To develop the laccase with high activity and strong tolerance, we carried out directed evolution for modification of the laccase derived from and screened out the mutants F282L/F306L and Q275P from the random mutant library by high-throughput screening.
View Article and Find Full Text PDFPlant Physiol
January 2025
Anhui Key Laboratory for Horticultural Crop Quality Biology, School of Horticulture, Anhui Agricultural University, Hefei, 230036, P.R. China.
Kiwifruit bacterial canker, a highly destructive disease caused by Pseudomonas syringae pv. actinidiae (Psa), seriously affects kiwifruit (Actinidia spp.) production.
View Article and Find Full Text PDFTransgenic Res
January 2025
Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin, 150040, China.
Lignin is a crucial defense phytochemical against phytophagous insects. Cinnamoyl-CoA reductase (CCR) is a key enzyme in lignin biosynthesis. In this study, transgenic Populus davidiana × P.
View Article and Find Full Text PDFBioresour Technol
December 2024
Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China. Electronic address:
Effective hydrolysis of lignocelluloses for producing reducing sugar is impeded by the covalent binding of hemicellulose and cellulose through lignin, which could be eliminated by laccases. This study identified a novel thermostable laccase from Bacillus safensis TCCC 111022 and created an iterative mutant E231D/Y441H, exhibiting 1.59-fold greater specific activity and a 183 % greater half-life at 80°C than the wild-type enzyme.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!