Background: Re-irradiation in radiotherapy presents complexities that require dedicated tools to generate optimal re-treatment plans. This study presents a robust workflow that considers fractionation size, anatomical variations between treatments, and cumulative bias doses to improve the re-irradiation planning process.
Methods: The workflow was automated in MIM® Software and the Elekta© Monaco® treatment planning system. Prior treatment doses are deformably mapped, converted to equivalent dose in 2 Gy fractions (EQD2), and accumulated onto the re-treatment planning CT. Two MIM extensions were developed to estimate voxel-wise dose mapping uncertainties and to convert the cumulative EQD2 into a physical dose distribution equivalent to the re-treatment fractionation size. This dose distribution is used in Monaco as bias to optimize the re-irradiation plan. The workflow was retrospectively tested with data from 14 patients, and the outcomes were compared to the manually optimized plans (MOPs) clinically utilized.
Results: Bias-dose guided plans (BDGPs) demonstrated a median reduction of the critical organ at risk (OAR) cumulative EQD2 metrics of 240 cGy (range: 1909 cGy, -187 cGy, p = 0.002). BDGPs allowed higher target coverage in cases where the MOP approach implied dose de-escalation of the target. The dose mapping uncertainties resulted in OAR cumulative EQD2 metrics increments ranging from 10 cGy to 730 cGy.
Conclusions: We introduced a re-irradiation planning workflow using commercially available software that accounts for anatomic and fraction size variations and improves planning efficiency. Employing voxel-level bias dose guidance demonstrated OAR-sparing benefits while maximizing prescription dose coverage to targets. The workflow's robustness tools aid informed clinical decision-making.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.radonc.2025.110741 | DOI Listing |
BMC Cancer
January 2025
Department of Radiation Oncology, First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming, 650032, P. R. China.
Introduction: The core objective of this study was to precisely locate metastatic lymph nodes, identify potential areas in nasopharyngeal carcinoma patients that may not require radiotherapy, and propose a hypothesis for reduced target volume radiotherapy on the basis of these findings. Ultimately, we reassessed the differences in dosimetry of organs at risk (OARs) between reduced target volume (reduced CTV2) radiotherapy and standard radiotherapy.
Methods And Materials: A total of 209 patients participated in the study.
BMC Public Health
January 2025
Gavi, The Vaccine Alliance, Geneva, Switzerland.
Background: The National Expanded Program on Immunization in the Democratic Republic of the Congo implemented a program in 9 Provinces to generate georeferenced immunization microplans to strengthen the planning and implementation of vaccination services. The intervention aimed to improve identification and immunization of zero-dose children and overall immunization coverage.
Methods: This study applies a mixed-methods design including survey tools, in-depth interviews and direct observation to document the uptake, use, and acceptance of the immunization microplans developed with geospatial data in two intervention provinces and one control province from February to June 2023.
BMC Infect Dis
January 2025
Department of Medical Microbiology and Immunology, Faculty of Medicine, Cairo University, Al-Saray Street, Al-Manial, Cairo, 11562, Egypt.
Background: Fungal invasive infections caused by Candida species pose a substantial public health risk with limited therapeutic options. Antifungal susceptibility testing (AFST) is necessary to optimize the therapy. The study aimed to compare different AFST methods of Candida spp.
View Article and Find Full Text PDFRadiother Oncol
January 2025
Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI 53226, United States. Electronic address:
Background: Re-irradiation in radiotherapy presents complexities that require dedicated tools to generate optimal re-treatment plans. This study presents a robust workflow that considers fractionation size, anatomical variations between treatments, and cumulative bias doses to improve the re-irradiation planning process.
Methods: The workflow was automated in MIM® Software and the Elekta© Monaco® treatment planning system.
Int J Biol Macromol
January 2025
Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk 71421, Saudi Arabia. Electronic address:
Dyes can seriously harm human health because they linger or break down in the environment and find their way into drinking water through the water cycle. Examples of the most important interactions between MOFs and dyes are provided, and an effort is made to comprehend how surface charge and size compatibility affect the adsorption process. The methods for incorporating functionalized Ce-MOF into electrospun nanofibers made of polyvinyl alcohol and chitosan to create functionalized cerium metal organic framework nanofiber membranes (FCCP nanofiber membranes) are presented in this paper.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!