Tissue development and regeneration rely on the deployment of embryonic signals to drive progenitor activity and thus generate complex cell diversity and organization. One such signal is Sonic Hedgehog (Shh), which establishes the dorsal-ventral (D/V) axis of the spinal cord during embryogenesis. However, the existence of this D/V axis and its dependence on Shh signaling during regeneration varies by species. Here we investigate the function of Shh signaling in patterning the D/V axis during spinal cord regeneration in Xenopus tropicalis tadpoles. We find that neural progenitor markers Msx1/2, Nkx6.1, and Nkx2.2 are confined to dorsal, intermediate and ventral spatial domains, respectively, in both the uninjured and regenerating spinal cord. These domains are altered by perturbation of Shh signaling. Additionally, we find that these D/V domains are more sensitive to Shh perturbation during regeneration than uninjured tissue. The renewed sensitivity of these neural progenitor cells to Shh signals represents a regeneration specific response and raises questions about how responsiveness to developmental patterning cues is regulated in mature and regenerating tissues.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ydbio.2025.01.015 | DOI Listing |
Dev Cell
January 2025
Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada. Electronic address:
Distinguishing tumor maintenance genes from initiation, progression, and passenger genes is critical for developing effective therapies. We employed a functional genomic approach using the Lazy Piggy transposon to identify tumor maintenance genes in vivo and applied this to sonic hedgehog (SHH) medulloblastoma (MB). Combining Lazy Piggy screening in mice and transcriptomic profiling of human MB, we identified the voltage-gated potassium channel KCNB2 as a candidate maintenance driver.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Developmental and Regenerative Biology, Medical Research Institute, Institute of Science Tokyo, Tokyo 113-8510, Japan.
The eye primordium of vertebrates initially forms exactly at the side of the head. Later, the eyeball architecture is tuned to see ahead with better visual acuity, but its molecular basis is unknown. The position of both eyes in the face alters in patients with holoprosencephaly due to () mutations that disturb the development of the ventral midline of the neural tube.
View Article and Find Full Text PDFAntioxidants (Basel)
January 2025
Energy & Memory, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, F-75006 Paris, France.
Medulloblastoma (MB) is the most common malignant brain tumor in children, typically arising during infancy and childhood. Despite multimodal therapies achieving a response rate of 70% in children older than 3 years, treatment remains challenging. Ferroptosis, a form of regulated cell death, can be induced in medulloblastoma cells in vitro using erastin or RSL3.
View Article and Find Full Text PDFDev Biol
January 2025
Department of Biochemistry, University of Washington School of Medicine. Electronic address:
Tissue development and regeneration rely on the deployment of embryonic signals to drive progenitor activity and thus generate complex cell diversity and organization. One such signal is Sonic Hedgehog (Shh), which establishes the dorsal-ventral (D/V) axis of the spinal cord during embryogenesis. However, the existence of this D/V axis and its dependence on Shh signaling during regeneration varies by species.
View Article and Find Full Text PDFHeliyon
January 2025
Université de Reims Champagne-Ardenne, INSERM, P3Cell UMR-S1250, Reims, France.
Hedgehog (HH) pathway is involved in pulmonary development and lung homeostasis. It orchestrates airway epithelial cell (AEC) differentiation and contributes to respiratory pathogenesis. The core elements Gli2, Smo, and Shh were found altered in the bronchial epithelium of patients with chronic obstructive pulmonary disease (COPD).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!