Drug-induced cholestasis (DIC) is a leading cause of drug-induced liver injury post-drug marketing, characterized by bile flow obstruction and toxic bile constituent accumulation within hepatocytes. This study investigates the toxicity associated with intracellular bile acid (BA) accumulation during DIC development. Using liquid chromatography with tandem mass spectrometry (LC-MS/MS) analysis, we examined intracellular BA concentrations in human precision-cut liver slices (PCLS) following the administration of cyclosporin A and chlorpromazine, both with and without an established BA mixture. Our findings indicate toxicity of cyclosporin A upon BA addition, while chlorpromazine's toxicity remained unaffected. Although neither drug led to the accumulation of all BAs intracellularly, BA mixture addition resulted in the accumulation of unconjugated BAs associated with DIC, such as deoxycholic acid (DCA) and cholic acid (CA). Additionally, cyclosporin A increased taurolithocholic acid (TLCA) concentrations. In the absence of the BA mixture, a decrease in conjugated BAs was observed, suggesting inhibition of BA metabolism by cholestatic drugs and warranting further investigation. The evident increase in CA and DCA for both drugs (and TLCA for cyclosporin A), despite not exacerbating toxicity with chlorpromazine, suggests these increases may be related to DIC development and possible toxicity. In conclusion, the current human PCLS model is appropriate for investigating and detecting essential contributors to DIC and can be used in future studies elucidating DIC ex vivo.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.tiv.2025.106011 | DOI Listing |
Toxicol In Vitro
January 2025
University of Groningen, Groningen Research Institute of Pharmacy, Department of Pharmaceutical Technology and Biopharmacy, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands. Electronic address:
Drug-induced cholestasis (DIC) is a leading cause of drug-induced liver injury post-drug marketing, characterized by bile flow obstruction and toxic bile constituent accumulation within hepatocytes. This study investigates the toxicity associated with intracellular bile acid (BA) accumulation during DIC development. Using liquid chromatography with tandem mass spectrometry (LC-MS/MS) analysis, we examined intracellular BA concentrations in human precision-cut liver slices (PCLS) following the administration of cyclosporin A and chlorpromazine, both with and without an established BA mixture.
View Article and Find Full Text PDFScience
January 2025
Center for Pulmonary Vascular Biology and Medicine, Pittsburgh, Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA.
Vascular inflammation regulates endothelial pathophenotypes, particularly in pulmonary arterial hypertension (PAH). Dysregulated lysosomal activity and cholesterol metabolism activate pathogenic inflammation, but their relevance to PAH is unclear. Nuclear receptor coactivator 7 () deficiency in endothelium produced an oxysterol and bile acid signature through lysosomal dysregulation, promoting endothelial pathophenotypes.
View Article and Find Full Text PDFFront Pharmacol
January 2025
Institute of Geriatric Medicine, Jiangsu Province Geriatric Hospital, Nanjing, China.
Introduction: , a traditional medicinal plant, is renowned for its therapeutic properties, including the promotion of anti-inflammatory and bile secretion. Notably, it has demonstrated efficacy in the treatment of jaundice. This study aimed to evaluate the potential of -derived exosomes (ACDEs) as a novel therapeutic approach in non-alcoholic fatty liver disease (NAFLD).
View Article and Find Full Text PDFBackground & Aims: Hepatic insulin resistance is a fundamental phenomenon observed in both Type 2 diabetes (T2D) and metabolic (dysfunction) associated fatty liver disease (MAFLD). The relative contributions of nutrients, hyperinsulinemia, hormones, inflammation, and other cues are difficult to parse as they are convoluted by interplay between the local and systemic events. Here, we used a well-established human liver microphysiological system (MPS) to establish a physiologically-relevant insulin-responsive metabolic baseline and probe how primary human hepatocytes respond to controlled perturbations in insulin, glucose, and free fatty acids (FFAs).
View Article and Find Full Text PDFBMC Pregnancy Childbirth
January 2025
School of Medicine, The International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University, Shanghai, 200030, China.
Background: Intrahepatic cholestasis of pregnancy (ICP) is the most common liver disorder associated with pregnancy and is usually diagnosed based on high serum bile acid. However, the pathogenesis of ICP is unclear. Ferroptosis has been reported as an iron-dependent mechanism of cell death.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!