Abnormal base excision repair (BER) pathway and N6-methyladenosine (m6A) of RNA have been proved to be significantly related to age-related cataract (ARC) pathogenesis. However, the relationship between the Nei Endonuclease VIII-Like1 (NEIL1) gene (a representative DNA glycosylase of BER pathway) and its m6A modification remains unclear. Here, we showed that the expression of NEIL1 was decreased in the ARC anterior lens capsules and HO-stimulated SRA01/04 cells. Our findings demonstrated that ectopic expression of NEIL1 alleviated DNA oxidative damage, apoptosis and mitochondrial dysfunction through disturbing KEAP1/NRF2 interaction. Furthermore, silencing NEIL1 aggravated HO-induced lens opacity, whereas ML334 could mitigate lens cloudy ex vitro in rat lenses. Besides, intravitreal injection of AAV2-NEIL1 alleviated lens opacity in Emory mice in vivo. Mechanistically, the N(6)-Methyladenosine (m6A) methyltransferase-like 14 (METTL14) was identified as a factor in promoting m6A modification of NEIL1, which resulted in the recruitment of YTHDF2 to recognize and impair NEIL1 RNA stability. Collectively, these findings highlight the critical role of the m6A modification in NEIL1 on regulating oxidative stress and mitochondrial homeostasis through KEAP1/NRF2 pathways, providing a new way to explore the pathogenesis of ARC.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cellsig.2025.111623DOI Listing

Publication Analysis

Top Keywords

m6a modification
12
neil1
8
oxidative damage
8
mitochondrial dysfunction
8
keap1/nrf2 pathways
8
ber pathway
8
n6-methyladenosine m6a
8
expression neil1
8
lens opacity
8
modification neil1
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!