Elucidating the physicochemical interactions between fibrinogen and surfactant mixtures: Implications for pharmaceutical sciences.

Int J Biol Macromol

Soft Matter and Molecular Biophysics Group, Department of Applied Physics and Institute of Materials (iMATUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain.

Published: January 2025

This study investigates the physicochemical interactions between fibrinogen (Fib), a key glycoprotein in blood clotting, and a mixture of two biologically active compounds: dicloxacillin (Diclox), an antibiotic; and cetyltrimethylammonium bromide (CTAB), a cationic surfactant. Understanding these interactions is crucial for enhancing drug delivery systems and optimizing pharmaceutical formulations. Molecular docking simulations and various spectroscopic techniques, including UV-Vis, fluorescence, and circular dichroism, were employed to explore how this mixture affects the structural and functional properties of fibrinogen. The docking results revealed that the binding affinity of the dicloxacillin-CTAB mixture with fibrinogen was stronger than either compound individually, suggesting a synergistic interaction. Spectroscopic analysis confirmed structural modifications in the fibrinogen molecule, notably in α-helix content and aromatic residues, indicating loosening or unfolding in protein conformation upon ligand binding. Thermodynamic analyses further supported that the binding process was driven by hydrophobic interactions and electrostatic forces, contributing to stable complex formation. This study advances the current understanding of protein-ligand interactions by exploring the synergistic effects of a dual-ligand system, a novel approach that has not been comprehensively explored in previous literature. These findings provide new insights into the design of drug delivery systems, offering potential applications for improving the efficacy and safety of pharmaceutical formulations targeting fibrinogen-related conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2025.140265DOI Listing

Publication Analysis

Top Keywords

physicochemical interactions
8
interactions fibrinogen
8
drug delivery
8
delivery systems
8
pharmaceutical formulations
8
interactions
5
fibrinogen
5
elucidating physicochemical
4
fibrinogen surfactant
4
surfactant mixtures
4

Similar Publications

Acoustical properties are essential for understanding the molecular interactions in fluids, as they influence the physicochemical behavior of liquids and determine their suitability for diverse applications. This study investigated the acoustical parameters of silver nanoparticles (Ag NPs), reduced graphene oxide (rGO), and Ag/rGO nanocomposite nanofluids at varying concentrations. Ag NPs and Ag/rGO nanocomposites were synthesized via a Bos taurus indicus (BTI) metabolic waste-assisted method and characterized using advanced techniques, including XRD, TEM, Raman, DLS, zeta potential, and XPS.

View Article and Find Full Text PDF

Molecular mechanism of protein-lipid interactions in steamed egg gelation and deterioration: A quantitative proteomic study.

Int J Biol Macromol

January 2025

Institute for Egg Science and Technology, School of Food and Biological Engineering, Chengdu University, No. 2025 Chengluo Avenue, Chengdu 610106, China. Electronic address:

Steamed egg (SE), a traditional egg dish, exhibits steaming time-dependent textural properties. This study investigated the molecular mechanisms underlying SE gel formation and deterioration through quantitative proteomics combined with physicochemical characterization. Results showed optimal gel formation at 11 min steaming, while prolonged steaming (23 min) led to gel cracking and sensory deterioration.

View Article and Find Full Text PDF

High-affinity VNARs targeting human hemoglobin: Screening, stability and binding analysis.

Int J Biol Macromol

January 2025

College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China. Electronic address:

Hemoglobin, composed of α- and β-chains, is essential for oxygen transport and is key in diagnosing and treating gastrointestinal and blood disorders. It also aids in detecting blood contamination and estimating transfusion volumes. Immunological methods, based on antigen-antibody interactions, are distinguished by their high sensitivity and accuracy.

View Article and Find Full Text PDF

Advancing protein structure prediction beyond AlphaFold2.

Curr Opin Struct Biol

January 2025

Department of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea. Electronic address:

Accurate prediction of protein structures is essential for understanding their biological functions. The release of AlphaFold2 in 2021 marked a significant breakthrough, delivering unprecedented accuracy. However, challenges remain, particularly for proteins with limited evolutionary data or complex molecular interactions.

View Article and Find Full Text PDF

α-Terpineol and 1,8-cineole are two important compounds in essential oils. This study developed an efficient method to recover α-terpineol from model oil (MO) based on association extraction by in situ formations of deep eutectic solvent (DES) between α-terpineol and some quaternary ammonium salts (QASs) by hydrogen-bond (HB) interaction. Such interaction could be broken almost completely by the introduction of water, due to the stronger HB interaction between water and QASs, which could release α-terpineol by liquid-liquid separation and save the organic solvents consumption.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!