Intrauterine adhesion (IUA) is an endometrial damage repair disorder that leads to menstrual loss, amenorrhea, and infertility in women; therefore, addressing this dilemma is a critical challenge. In this study, a multifunctional hydrogel, comprising oxidized sodium alginate (OSA), strontium carbonate (SrCO), and betamethasone 21-phosphate sodium (BSP), was formulated to facilitate angiogenesis, reduce fibrosis, and support tissue repair in the treatment of IUA. The composite hydrogels showed significant bioactivity on human endometrial stromal cells (HESCs) and human umbilical vein endothelial cells (HUVECs), promoting the injured HESCs repair, reversing the degree of fibrosis to a certain extent, and enhancing the proliferation and migration of HUVECs. These results were also verified in the IUA model of sexually mature female rats. Compared with the model group, the selection of the appropriate hydrogel significantly increased endometrial thickness (p < 0.01), the number of glands (p < 0.001), decreased the degree of fibrosis (p < 0.05), and Vimentin (p < 0.01), CK19 (p < 0.01), CD31 (p < 0.01), and Ki67 (p < 0.01) molecular expression increased remarkably. In summary, in situ injection of this multifunctional hydrogel into the uterine cavity not only serves as a physical barrier, isolating the damaged endometrium, but also gradually releases drugs as the hydrogel degrades. This multifunctional hydrogel promotes endometrial proliferation and angiogenesis while reducing fibrosis, and provides therapeutic strategies for patients with clinical IUA.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2025.140220 | DOI Listing |
Biol Res
January 2025
Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran.
Fluoride (F), as a natural element found in a wide range of sources such as water and certain foods, has been proven to be beneficial in preventing dental caries, but concerns have been raised regarding its potential deleterious effects on overall health. Sodium fluoride (NaF), another form of F, has the ability to accumulate in reproductive organs and interfere with hormonal regulation and oxidative stress pathways, contributing to reproductive toxicity. While the exact mechanisms of F-induced reproductive toxicity are not fully understood, this review aims to elucidate the mechanisms involved in testicular and ovarian injury.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102446, China. Electronic address:
Age-related cataract (ARC) remains the leading cause of blindness worldwide. Sagittaria sagittifolia polysaccharide (SSP) extract, a key component of Sagittaria sagittifolia L., exhibits anti-oxidant and anti-apoptotic effects with potential applications in ARC.
View Article and Find Full Text PDFArch Biochem Biophys
January 2025
Department of Critical Care Medicine, the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province 150001, China; Heilongjiang Provincial Key Laboratory of Critical Care Medicine, Harbin 150001, China; Central Laboratory of The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China. Electronic address:
Background: Ischemia-reperfusion injury (IRI) often results in renal impairment. While the presence of neutrophil extracellular traps (NETs) is consistently observed, their specific impact on IRI is not yet defined. Sivelestat sodium, an inhibitor of neutrophil elastase which is crucial for NET formation, may offer a therapeutic approach to renal IRI, warranting further research.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Fujian Province Key Laboratory of Pollution Control and Resource Reuse, College of Environmental and Resource Science, Fujian Normal University, Fuzhou, 350007, Fujian Province, China. Electronic address:
Since the widespread use of antibiotics, the residues of antibiotics have frequently been detected in various water sources, making antibiotic pollution an urgent environmental issue. In this paper, one-step green synthetic reduced graphene/manganese nanoparticles (rGO/Mn NPs) composites have been utilized as a novel environmentally-friendly catalyst for tetracycline (TC) removal. The results demonstrated that rGO/Mn NPs exhibit excellent adsorption performance for TC, and can efficiently activate sodium persulfate (PDS) to oxidize and degrade TC.
View Article and Find Full Text PDFClin Oral Investig
January 2025
Department of Restorative Dentistry, Dental Materials, and Endodontics, Bauru School of Dentistry, University of São Paulo, Rua Siqueira Campos, 180, Centro, Vitória da Conquista, Bauru, São Paulo, BA, ZIP: 45.000-455, Brazil.
Objective: This study investigated the associations among endodontic instruments, ultrasonic tips and various final irrigation protocols for removing intracanal and intratubular biofilms in long oval canals.
Methodology: One hundred mandibular premolars inoculated with Enterococcus faecalis were divided into two groups: the control group (CG: n = 10), which received no treatment; and the test groups (n = 30), which included saline (SS), sodium hypochlorite (2.5% NaOCl) and chlorhexidine (2% CHX).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!