Integrated enzyme activities and untargeted metabolome to reveal the mechanism that allow long-term biochar-based fertilizer substitution improves soil quality and maize yield.

Environ Res

Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; Key Laboratory of Low-carbon Green Agriculture in Southeastern China, Ministry of Agriculture and Rural Affairs, Shanghai 201403, China. Electronic address:

Published: January 2025

AI Article Synopsis

Article Abstract

Biochar-based fertilizer has potential benefits in improving soil quality and crop yield, but the biological mechanisms of soil microbial enzymes interacting with related metabolisms still need to be further investigated. In this study, we combined enzymology and untargeted metabolomics to investigate how biochar-based fertilizer substitution affects soil quality and crop yield by regulating soil enzymes and metabolites in dry-crop farmland. Our findings showed that biochar-based fertilizer substitution enhanced the activities of enzymes related to carbon, nitrogen, and phosphorus cycling, as well as influenced metabolite composition. The identified differential metabolites were enriched into 10 metabolic pathways including linoleic acid metabolism, fatty acid biosynthesis, styrene degradation, ABC transporters, biosynthesis of unsaturated fatty acids, glutathione metabolism, glycine, serine and threonine metabolism, phenylalanine metabolism, pyrimidine metabolism, and arachidonic acid metabolism. Substantial soil quality index improvement was demonstrated, with at least 63.46% increased, under biochar-based fertilizer application, while maize yield was increased by at least 11.16%, compared to conventional fertilizer. Model analysis elucidated mechanisms underlying soil quality and maize yield enhancement, emphasizing the importance of intrinsic regulation through the release of carbon- and nitrogen-related enzymes (e.g., α-glucosidase (α-GC), N-acetyl-β-D-glucosidase (NAG), and leucine aminopeptidase (LAP)) and specific metabolites (e.g., stearic acid, arachidonic acid, and melibiose). Moreover, the key role of soil quality factors was highlighted, with soil organic carbon (SOC), microbial biomass, and available nutrients playing a fundamental role in contributing to the increase in maize yield. The above findings illustrated that biochar-based fertilizer is crucial in modulating soil microbial activity and their metabolites, and their interactions in the soil are essential for promoting improved soil quality and crop yield.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envres.2025.120935DOI Listing

Publication Analysis

Top Keywords

soil quality
28
biochar-based fertilizer
24
maize yield
16
fertilizer substitution
12
soil
12
quality crop
12
crop yield
12
quality maize
8
soil microbial
8
acid metabolism
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!