Salvianolic acid B drives gluconeogenesis and peroxisomal redox remodeling in cardiac ischemia/reperfusion injury: A metabolism regulation by metabolite signal crosstalk.

Free Radic Biol Med

Shanxi Key Laboratory of Innovative Drug for the Treatment of Serious Diseases Basing on the Chronic Inflammation, College of Traditional Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Taiyuan, Shanxi 030619, China; School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China; Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan 030001, China. Electronic address:

Published: January 2025

Cardiac metabolism relies on glycogen conversion by glycolysis. Glycolysis intersects fatty acid oxidation and often directs a signal crosstalk between redox metabolites. Myocardium with ischemia/reperfusion significantly diverts from normal metabolism. Prospectively, peroxisome lies central to metabolism and redox changes, but mechanisms underlying in ischemia/reperfusion remain undefined. This work aims at investigating the potential effects and mechanisms of Salvianolic acid B (Sal B) in cardioprotection through metabolic remodeling. Following experiments, we found that Sal B is absorbed in blood and rat hearts and its cardiac absorption prevents ischemia/reperfusion injury. Sal B cardioprotection relates to gluconeogenesis activation and peroxisomal redox remodeling. Gluconeogenesis compensates glycogen synthesis through upregulating pyruvate carboxylase (PC) and phosphoenolpyruvate carboxykinase. Gluconeogenic PC activity drives peroxisomal Pex2/Pex3 expressions and promotes the proliferation of peroxisome. Peroxisome quality control is enhanced with Pex5/Pex14/Pex13/Pex2 transcriptions. Nono, a non-POU domain-containing octamer-binding protein, promotes upregulation of gluconeogenic PC and peroxisomal gene transcripts through transcriptionally splicing their pre-RNAs at octamer duplex. Nono also controls the expression of SARM1/PARP1/sirtuin1 for catalyzing nicotinamide adenine dinucleotide (NAD) consumption, leading to endurable redox capacities of peroxisome. Peroxisomal redox remodeling alters reactive oxygen species (ROS) and NAD contents, following which NAD affects cardiac accumulation of physiologically harmful glucocorticoid. In the tests of Sal B combinational treatments, results indicate ROS upregulation whereas NAD downregulation with glucocorticoid, ROS scavenging and glucocorticoid elimination with NAD precursor, and NAD promotion with ROS scavenger, respectively. This metabolite signal crosstalk alternatively antagonizes/agonizes Sal B cardioprotective functions on electrocardiographic output and infarction. Taken together, we reported a cardiac metabolism regulation with Sal B, capable of preventing myocardium from ischemia/reperfusion injury. The metabolite signal crosstalk was achieved by coupling reaction cascades between gluconeogenesis and peroxisomal redox remodeling.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.freeradbiomed.2025.01.037DOI Listing

Publication Analysis

Top Keywords

peroxisomal redox
16
redox remodeling
16
signal crosstalk
16
ischemia/reperfusion injury
12
metabolite signal
12
salvianolic acid
8
gluconeogenesis peroxisomal
8
metabolism regulation
8
cardiac metabolism
8
myocardium ischemia/reperfusion
8

Similar Publications

The General Principle of the Warburg Effect as a Possible Approach for Cancer Immunotherapy: The Regulatory Effect of Plant Extracts Could Change the Game.

Molecules

January 2025

Department of Pharmacology, Animal Physiology Biochemistry and Chemistry, Faculty of Veterinary Medicine, Trakia University, 6000 Stara Zagora, Bulgaria.

The interpretation of the biochemistry of immune metabolism could be considered an attractive scientific field of biomedicine research. In this review, the role of glycolysis in macrophage polarization is discussed together with mitochondrial metabolism in cancer cells. In the first part, the focus is on the Warburg effect and redox metabolism during macrophage polarization, cancer development, and management of the immune response by the cancer cells.

View Article and Find Full Text PDF

A Rewired NADPH-Dependent Redox Shuttle for Testing Peroxisomal Compartmentalization of Synthetic Metabolic Pathways in .

Microorganisms

December 2024

Department of Chemical, Biological and Environmental Engineering, Universitat Autònoma de Barcelona, Carrer de les Sitges, s/n, 08193 Bellaterra, Catalonia, Spain.

The introduction of heterologous pathways into microbial cell compartments offers several potential advantages, including increasing enzyme concentrations and reducing competition with native pathways, making this approach attractive for producing complex metabolites like fatty acids and fatty alcohols. However, measuring subcellular concentrations of these metabolites remains technically challenging. Here, we explored 3-hydroxypropionic acid (3-HP), readily quantifiable and sharing the same precursors-acetyl-CoA, NADPH, and ATP-with the above-mentioned products, as a reporter metabolite for peroxisomal engineering in the yeast .

View Article and Find Full Text PDF

Salvianolic acid B drives gluconeogenesis and peroxisomal redox remodeling in cardiac ischemia/reperfusion injury: A metabolism regulation by metabolite signal crosstalk.

Free Radic Biol Med

January 2025

Shanxi Key Laboratory of Innovative Drug for the Treatment of Serious Diseases Basing on the Chronic Inflammation, College of Traditional Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Taiyuan, Shanxi 030619, China; School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China; Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan 030001, China. Electronic address:

Cardiac metabolism relies on glycogen conversion by glycolysis. Glycolysis intersects fatty acid oxidation and often directs a signal crosstalk between redox metabolites. Myocardium with ischemia/reperfusion significantly diverts from normal metabolism.

View Article and Find Full Text PDF

Modelling Peroxisomal Disorders in Zebrafish.

Cells

January 2025

Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter EX4 4QD, UK.

Peroxisomes are ubiquitous, dynamic, oxidative organelles with key functions in cellular lipid metabolism and redox homeostasis. They have been linked to healthy ageing, neurodegeneration, cancer, the combat of pathogens and viruses, and infection and immune responses. Their biogenesis relies on several peroxins (encoded by genes), which mediate matrix protein import, membrane assembly, and peroxisome multiplication.

View Article and Find Full Text PDF

Pathogenic variants of cause Charcot-Marie-Tooth disease (CMT), an inherited neuropathy characterized by axonal degeneration. GDAP1, an atypical glutathione S-transferase, localizes to the outer mitochondrial membrane (OMM), regulating this organelle's dynamics, transport, and membrane contact sites (MCSs). It has been proposed that GDAP1 functions as a cellular redox sensor.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!