Nonlinear homogenised finite element (hFE) models can accurately predict stiffness and strength of ultra-distal sections of the radius and tibia using in vivo HR-pQCT images. Recent findings showed good stiffness prediction at these distal sections but a limited ability to reproduce experimental strain localisation. The coarseness of voxel-based meshes reduces the computational effort at the cost of heavily simplifying the underlying geometry of the cortex, the gradient of material properties, and the resulting strain distribution. To overcome these limitations, we present a comprehensive approach to generating fully automated, smooth, and structured hexahedral meshes for HR-pQCT scans at the distal radius and tibia. This study used three datasets to validate the proposed hFE pipeline and its short-term repeatability: ex vivo 2nd generation HR-pQCT images of 21 human radii and 25 human tibiae, and 208 in vivo images from same-day repeated scans on 39 individuals. Results show high accuracy in predicting stiffness (tibia: R=0.94, radius: R=0.88) and yield force (tibia: R=0.93, radius: R=0.95). Mesh sensitivity analysis reveals stabilisation within a ± 3 % error margin. Dice similarity coefficients between mesh and scanned image were >0.99, and good element quality was achieved across the validation datasets (tibia: S-ICN=0.809, radius: S-ICN=0.764). Along with the improved volumetric representation of distal cortical and trabecular bone geometry and the good element quality, the new pipeline shows gains in computational performance: 11.70±1.49 min for triple-stack tibia images and 11.00±0.97 min for double-stack radius images, respectively. Generating structured meshes with consistent element-to-element correspondence facilitates seamless comparison between patient models or in longitudinal settings, providing an additional clinical information.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bone.2025.117394 | DOI Listing |
Zhonghua Bing Li Xue Za Zhi
February 2025
Department of Pathology, the First Affiliated Hospital of Air Force Medical University, Xi'an 710032, China.
To investigate the clinicopathological features, diagnosis, genetic alterations, and biological behaviors of hamartomatous inverted hyperplastic polyp (HIHP) in the gastrointestinal tract. The clinical, sonographic, endoscopic and pathologic data of 10 HIHP cases diagnosed at the First Affiliated Hospital of Air Force Medical University, Xi'an, China from January 2013 to March 2024 were collected. Their clinicopathological features and histological morphology were analyzed.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
January 2025
Department of Cytobiology and Proteomics, Medical University of Lodz, 92-215 Lodz, Poland.
Background: Androgenic anabolic steroids (AASs) are synthetic drugs structurally related to testosterone, with the ability to bind to androgen receptors. Their uncontrolled use by professional and recreational sportspeople is a widespread problem. AAS abuse is correlated with severe damage to the cardiovascular system, including changes in homeostasis and coagulation disorders.
View Article and Find Full Text PDFSensors (Basel)
January 2025
State Key Laboratory of High Performance Complex Manufacturing, Changsha 410083, China.
Local electrochemical deposition (LECD) is an innovative additive manufacturing technology capable of achieving precise deposition of metallic microstructures. This study delves into the ramifications of pivotal operational parameters-namely, the initial electrode gap, deposition voltage, and additive concentration-on the morphology of zinc microcolumns fabricated through LECD. A holistic approach integrating experimental methodologies with finite element simulations was adopted to scrutinize the influence of these variables on the microcolumns' dimensions, surface morphology, and structural integrity.
View Article and Find Full Text PDFSensors (Basel)
January 2025
School of Biomedical Engineering, Tsinghua University, Shuang Qing Road, Beijing 100084, China.
Mastoidectomy is critical in acoustic neuroma surgery, where precise planning of the bone milling area is essential for surgical navigation. The complexity of representing the irregular volumetric area and the presence of high-risk structures (e.g.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Key Laboratory of Concrete and Pre-Stressed Concrete Structures of the Ministry of Education, Southeast University, Nanjing 210096, China.
A method of bridge structure seismic response identification combining signal processing technology and deep learning technology is proposed. The short-time energy method is used to intelligently extract the non-smooth segments in the sensor acquired signals, and the short-time Fourier transform, continuous wavelet transform, and Meier frequency cestrum coefficients are used to analyze the spectrum of the non-smooth segments of the response of the bridge structure, and the response feature matrix is extracted and used to classify sequences or images in the LSTM network and the Resnet50 network. The results show that the signal processing techniques can effectively extract the structural response features and reduce the overfitting phenomenon of neural networks, and the combination of signal processing techniques and deep learning techniques can recognize the seismic response of bridge structures with high accuracy and efficiency.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!