Repurposing eugenol and cinnamaldehyde as potent antimicrobial agents: A comprehensive in-vitro and in-silico study.

Bioorg Chem

Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia. Electronic address:

Published: January 2025

AI Article Synopsis

Article Abstract

Multi-drug-resistant (MDR) pathogens represent a critical global health threat, necessitating the development of novel antimicrobial agents with broad-spectrum activity and minimal toxicity. This study investigates the antimicrobial and anti-biofilm properties of 4-Allyl-2-methoxyphenol (eugenol, EU) and (E)-3-Phenylprop-2-enal (cinnamaldehyde, CN) against 19 clinically significant pathogens through a combination of in-vitro assays and in-silico analyses. EU displayed remarkable activity, particularly against Aspergillus niger (20.5 ± 0.5 mm), and strong binding affinities with key protein targets, including peptide deformylase and β-carbonic anhydrase, with binding free energies (ΔG) ranging from -12.75 to -0.60 kcal/mol. CN exhibited exceptional activity against Staphylococcus epidermidis (29.6 ± 0.4 mm) and Candida albicans (36.6 ± 0.4 mm), supported by a significant binding affinity with β-carbonic anhydrase (ΔG: -5.23 kcal/mol). Dissociation constants (K) derived from MM-GBSA analyses indicated EU's strong inhibitory potential with nano- to picomolar K values, directly correlating with low IC values. CN demonstrated moderate inhibitory activity with K in the micromolar range. Molecular dynamics (MD) simulations confirmed the stability of these protein-ligand complexes, revealing critical hydrophobic interactions, such as those involving PHE122, that contributed to binding stabilization. ADMET profiling further underscored the favorable pharmacokinetics and safety of both compounds. These findings establish EU and CN as promising candidates for antimicrobial therapy, with potential applications in combating MDR pathogens and biofilm-associated infections. The complementary strengths of EU and CN warrant further structural optimization and combination studies, offering new avenues in the development of next-generation antimicrobial agents.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bioorg.2025.108199DOI Listing

Publication Analysis

Top Keywords

antimicrobial agents
12
mdr pathogens
8
β-carbonic anhydrase
8
antimicrobial
5
repurposing eugenol
4
eugenol cinnamaldehyde
4
cinnamaldehyde potent
4
potent antimicrobial
4
agents comprehensive
4
comprehensive in-vitro
4

Similar Publications

Adaptive immune resistance in cancer describes the various mechanisms by which tumors adapt to evade anti-tumor immune responses. IFN-γ induction of programmed death-ligand 1 (PD-L1) was the first defined and validated adaptive immune resistance mechanism. The endoplasmic reticulum (ER) is central to adaptive immune resistance as immune modulatory secreted and integral membrane proteins are dependent on ER.

View Article and Find Full Text PDF

Introduction: Since the dawn of the new millennium, Candida species have been increasingly implicated as a cause of both healthcare-associated as well as opportunistic yeast infections, due to the widespread use of indwelling medical devices, total parenteral nutrition, systemic corticosteroids, cytotoxic chemotherapy, and broad-spectrum antibiotics. Candida tropicalis is a pathogenic Candida species associated with considerable morbidity, mortality, and drug resistance issues on a global scale.

Methodology: We report a case of a 43-year-old man who was admitted to our hospital for further management of severe coronavirus disease 2019 (COVID-19) pneumonia.

View Article and Find Full Text PDF

Introduction: Antimicrobial resistance (AMR) is a major public health challenge globally. This study aimed to analyze the antibacterial consumption (ATBc), and the incidence of multidrug-resistant organisms (MDRO), focusing on pathogens Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp. (ESKAPE group), in a Brazilian tertiary care hospital.

View Article and Find Full Text PDF

Introduction: The global healthcare system faced unparalleled challenges during the coronavirus disease 2019 (COVID-19) pandemic, potentially reshaping antibiotic usage trends. This study aimed to evaluate the knowledge, perceptions, and observations of community pharmacists concerning antibiotic utilization during and after the pandemic; and offer crucial insights into its impact on antibiotic usage patterns and infection dynamics.

Methodology: This cross-sectional study involved 162 community pharmacists in Northern Cyprus.

View Article and Find Full Text PDF

Introduction: The objective of this study was to assess the effectiveness of ivermectin and colchicine as treatment options for coronavirus disease 2019 (COVID-19).

Methodology: A three-arm randomized controlled clinical trial was conducted in the Triage Clinic of the family medicine department at Ain Shams University Hospitals on participants who had been diagnosed with moderate COVID-19. Patients aged < 18 years or > 65 years, with any co-morbidities, pregnant or lactating females, and those with mild or severe COVID-19 confirmed cases were excluded.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!