Electrochemo-Mechanics insights of Sn foil anode in Sodium-Ion batteries.

J Colloid Interface Sci

School of Material Science and Engineering, "The Belt and Road Initiative" Advanced Materials International Joint Research Center of Hebei Province, Hebei University of Technology, Tianjin 300130 China. Electronic address:

Published: January 2025

The development of high-performance sodium-ion batteries (SIBs) is crucial to meeting the growing demand for low-cost, sustainable energy storage alternatives to lithium-ion batteries (LIBs). However, achieving stable cycling performance in SIBs is challenging, particularly with tin (Sn) foil anodes, which suffer from issues like sodium trapping and structural degradation due to significant volume changes during sodiation and desodiation. In this study, we investigate the electrochemo-mechanical behavior of Sn foil anodes, focusing on the mechanisms of sodium trapping and structural evolution that impair battery performance. We demonstrate that sodiation forms a porous coral-like structure in Sn, which, while increasing surface area, also contributes to severe volume expansion, crack formation, and diffusive sodium trapping. We further explore zinc (Zn)-doped Sn foils, revealing that Zn-rich phases create additional fast sodium diffusion channels, significantly reducing sodium retention and enhancing the anode's structural integrity. Based on these insights, we propose several improvement strategies, including electrolyte additives, optimized electrode architecture, microstructural defect engineering, and artificial solid-electrolyte interface (SEI) coatings, all aimed at enhancing cycle stability and performance. This work provides a comprehensive understanding of Sn-based anodes and offers practical pathways for advancing SIBs technology.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2025.01.182DOI Listing

Publication Analysis

Top Keywords

sodium trapping
12
sodium-ion batteries
8
foil anodes
8
trapping structural
8
sodium
5
electrochemo-mechanics insights
4
insights foil
4
foil anode
4
anode sodium-ion
4
batteries development
4

Similar Publications

Sivelestat sodium protects against renal ischemia/reperfusion injury by reduction of NETs formation.

Arch Biochem Biophys

January 2025

Department of Critical Care Medicine, the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province 150001, China; Heilongjiang Provincial Key Laboratory of Critical Care Medicine, Harbin 150001, China; Central Laboratory of The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China. Electronic address:

Background: Ischemia-reperfusion injury (IRI) often results in renal impairment. While the presence of neutrophil extracellular traps (NETs) is consistently observed, their specific impact on IRI is not yet defined. Sivelestat sodium, an inhibitor of neutrophil elastase which is crucial for NET formation, may offer a therapeutic approach to renal IRI, warranting further research.

View Article and Find Full Text PDF

Water pollution, resulting from industrial effluents, agricultural runoff, and pharmaceutical residues, poses serious threats to ecosystems and human health, highlighting the need for innovative approaches to effective remediation, particularly for non-biodegradable emerging pollutants. This research work explores the influence of shape-controlled nanocrystalline titanium dioxide (TiO NC), synthesized by a simple hydrothermal method, on the photodegradation efficiency of three different classes of emerging environmental pollutants: phenol, pesticides (methomyl), and drugs (sodium diclofenac). Experiments were conducted to assess the influence of the water matrix on treatment efficiency by using ultrapure water and stormwater (basic) collected from an urban drainage system as matrices.

View Article and Find Full Text PDF

Citric Acid and Sodium Bicarbonate as an Alternative Carbon Dioxide Source for Mosquito Surveillance.

Insects

January 2025

Sydney Infectious Diseases Institute, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia.

Most mosquito surveillance programs rely on traps baited with carbon dioxide (CO) to attract host-seeking mosquitoes. The source of CO, traditionally dry ice or gas cylinders, poses operational challenges, especially in remote locations. CO production from citric acid and sodium bicarbonate (NaHCO) using low-cost intravenous fluid bags ('acid traps') was evaluated in laboratory experiments.

View Article and Find Full Text PDF

Electrochemo-Mechanics insights of Sn foil anode in Sodium-Ion batteries.

J Colloid Interface Sci

January 2025

School of Material Science and Engineering, "The Belt and Road Initiative" Advanced Materials International Joint Research Center of Hebei Province, Hebei University of Technology, Tianjin 300130 China. Electronic address:

The development of high-performance sodium-ion batteries (SIBs) is crucial to meeting the growing demand for low-cost, sustainable energy storage alternatives to lithium-ion batteries (LIBs). However, achieving stable cycling performance in SIBs is challenging, particularly with tin (Sn) foil anodes, which suffer from issues like sodium trapping and structural degradation due to significant volume changes during sodiation and desodiation. In this study, we investigate the electrochemo-mechanical behavior of Sn foil anodes, focusing on the mechanisms of sodium trapping and structural evolution that impair battery performance.

View Article and Find Full Text PDF

Constructing an Injectable Multifunctional Antibacterial Hydrogel Adhesive to Seal Complex Interfaces Post-Dental Implantation to Improve Soft Tissue Integration.

Macromol Biosci

January 2025

Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Institute of Stomatological Research, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510062, China.

Soft tissue integration (STI) around dental implants determines their long-term success, and the key is to immediately construct a temporary soft tissue-like barrier to prevent bacterial invasion after implantation and then, promote STI. In response to this need, an injectable multi-crosslinked hydrogel (MCH) with abilities of self-healing, anti-swelling, degradability, and dry/wet adhesion to soft tissue/titanium is developed using gallic acid-graft-chitosan, oxidized sodium alginate, gelatin, and Cu with water and borax solution as solvents, whose properties can be controlled by adjusting its composition and ratio. MCH can not only immediately build a sealing barrier to block the bacterial invasion in the oral simulation environment but also deliver outstanding antibacterial efficacy through the synergism of trapping bacteria and releasing bactericidal agents such as chitosan, gallic acid, aldehyde, and Cu.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!