Active colloids driven out of thermal equilibrium serve as building blocks for smart materials with tunable structures and functions. Using chemical energy to drive colloids is advantageous but requires precise control over chemical release. To address this, we developed colloidal ionogels-polymer microspheres infused with ionic liquids-that show controlled assembly and self-propulsion upon tunable swelling. For example, we synthesized microspheres of polymethylmethacrylate loaded with ionic liquid [Bmim][PF], which were released from the colloidal ionogel upon swelling in alcohol-water mixtures and dissociated into cations and anions of different diffusivities. The resulting electric field leads to four types of pair-wise colloidal interactions via ionic diffusiophoresis and diffusioosmosis, giving rise to four types of self-assembled superstructures. These interactions were precisely modulated by altering the swelling conditions and the ionic liquids used. Additionally, partially blocking the ionogel's surface induces anisotropic swelling and asymmetric ion release, turning the colloidal ionogel into a self-propelled Janus colloidal motor powered by ionic self-diffusiophoresis, reaching speeds of several µm/s and lasting about 100 s. These findings indicate that colloidal ionogels are smart colloidal building blocks with highly tunable pair-wise interactions, self-assembled structures, and self-propulsion, offering potential applications in biomedical sensing, environmental monitoring, and photonics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2024.12.187 | DOI Listing |
Sci Rep
January 2025
Department of Biochemistry, College of Science, King Saud University, P.O.Box 2455, Riyadh, 11451, Saudi Arabia.
Nano-biochar considers a versatile and valuable sorbent to enhance plant productivity by improving soil environment and emerged as a novel solution for environmental remediation and sustainable agriculture in modern era. In this study, roles of foliar applied nanobiochar colloidal solution (NBS) on salt stressed tomato plants were investigated. For this purpose, NBS was applied (0%, 1% 3% and 5%) on two groups of plants (control 0 mM and salt stress 60 mM).
View Article and Find Full Text PDFSci Rep
January 2025
School of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok, 10520, Thailand.
A nanoemulsion was fabricated from Cananga odorata essential oil (EO) and stabilized by incorporation of Tween 80 using ultrasonication. The major constituents of the EO were benzyl benzoate, linalool, and phenylmethyl ester. Differing sonication amplitude (20-60%) and time (2-10 min) were assessed for effects on nanoemulsion droplet size and polydispersity index (PI).
View Article and Find Full Text PDFJ Colloid Interface Sci
April 2025
State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China. Electronic address:
Conventional light-driven antimicrobial strategies of zinc oxide (ZnO) are limited by inadequate illumination in dark environments. In this study, carboxylated cellulose nanocrystals (MCNC) mediated flower-like ZnO (C@Z) with self-promoted reactive oxygen species release under dark is fabricated. The adsorption of Zn ions on MCNC prompts the growth of ZnO along the (002) crystal plane, forming a flower-like hybrid with superior dispersibility and oxygen vacancies compared to MCNC-free ZnO, which exposes the (100) plane.
View Article and Find Full Text PDFJ Colloid Interface Sci
April 2025
College of Physics, Qingdao University, Qingdao 266071, China. Electronic address:
Polyacrylonitrile (PAN)-based composite solid electrolytes (CSEs) hold great promise in the practical deployment of solid lithium batteries (SLBs) owing to their high voltage stability but suffer from poor stability against Li-metal. Herein, a poly(1,3-dioxolane) (PDOL)-graphitic CN (g-CN, i.e.
View Article and Find Full Text PDFJ Colloid Interface Sci
April 2025
Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, Fudan University, Shanghai, China. Electronic address:
Triblock Pluronics of polyoxyethylene (PEO) and polyoxypropylene (PPO) are identified as competent suppressors for copper (Cu) electroplating in advanced electronics manufacturing. However, the specific interfacial roles of PEO and PPO blocks in Pluronic suppressors, are not yet fully understood, which is crucial for the rational design of effective suppressors. Herein, the influences of composition and block arrangement of such Pluronics on the inhibition against Cu plating are systematically investigated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!