Investigating the application of novel filling materials in Vertical Subsurface Flow Constructed Wetlands for the treatment of anaerobic effluents originating from domestic wastewater.

J Environ Manage

Sanitary Engineering Laboratory, Department of Water Resources and Environmental Engineering, School of Civil Engineering, National Technical University of Athens, 9 Iroon Polytechniou St., Zographou Campus, 15773, Athens, Greece.

Published: January 2025

Vertical subsurface flow constructed wetlands (VSSF CWs) were employed to investigate the use of biochar that could be produced with local agricultural biomass through pyrolysis, recycled glass from local recycling companies and gel beads with decreased packing volume and shipping cost as substrate alternatives to sand. The materials were assessed in terms of granulometry, porosity, adsorption capacity and hydraulic conductivity and were used for the treatment of an upflow anaerobic sludge blanket (UASB) reactor, treating domestic wastewater, effluent. Granulometry was a major factor impacting TSS removal that ranged from 81% ± 10% to 97% ± 2%. The COD removal was affected by granulometry, porosity and the active biofilm formation, since biochar removal was slightly higher (up to 93% ± 3%) than that of sand and recycled glass (up to 86% ± 4% and 85% ± 5%, respectively) and significantly higher than that of gel beads (up to 68% ± 8%). The higher porosity of biochar affected NH-N removal in which adsorption had a greater and longer effect. The overall NH-N removal ranged between 84% ± 11% and 99% ± 1% for all materials. Sand, biochar and glass achieved an 80% average removal of selected contaminants of emerging concern (CECs), including ibuprofen (IBU), naproxen (NPX), triclosan (TCS), bisphenol A (BPA), diclofenac (DCF) and ketoprofen (KFN). The biochar and recycled glass are effective in treating UASB effluent and enable the treated wastewater reuse, since, high compliance rates with the EU Regulation 2020/741 - Class A were achieved (>98% for TSS, >88% for BOD and 100% for turbidity).

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2025.124211DOI Listing

Publication Analysis

Top Keywords

recycled glass
12
vertical subsurface
8
subsurface flow
8
flow constructed
8
constructed wetlands
8
domestic wastewater
8
gel beads
8
granulometry porosity
8
removal ranged
8
nh-n removal
8

Similar Publications

Municipal waste classification is significant for effective recycling and waste management processes that involve the classification of diverse municipal waste materials such as paper, glass, plastic, and organic matter using diverse techniques. Yet, this municipal waste classification process faces several challenges, such as high computational complexity, more time consumption, and high variability in the appearance of waste caused by variations in color, type, and degradation level, which makes an inaccurate waste classification process. To overcome these challenges, this research proposes a novel Channel and Spatial Attention-Based Multiblock Convolutional Network for accurately classifying municipal waste that utilizes a unique attention mechanism for enhancing feature learning and waste classification accuracy.

View Article and Find Full Text PDF

Recycling end-of-life wind turbines poses a significant challenge due to the increasing number of turbines going out of use. After many years of operation, turbines lose their functional properties, generating a substantial amount of composite waste that requires efficient and environmentally friendly processing methods. Wind turbine blades, in particular, are a problematic component in the recycling process due to their complex material composition.

View Article and Find Full Text PDF

Composites are increasingly being modified with various types of fillers and nanofillers. These materials have attracted much attention due to the improvement in their properties compared to traditional composite materials. In the case of advanced technologies, adding additives to the matrix has created a number of possibilities for use in many industries, from electronics to mechanics.

View Article and Find Full Text PDF

Effective recycling and utilization of waste glass is a critical issue that urgently needs to be addressed. This study aims to explore the feasibility of using ground waste glass powder (particle size ≤ 75 μm) as a supplementary cementitious material to partially replace cement in the preparation of low-carbon and environmentally friendly grouting materials. The research systematically evaluates the impact of waste glass powder (WGP) on the fresh properties (particularly the stability and rheological characteristics) of cement-based grouting materials under various conditions, including WGP content (0-40%), the addition of NaOH activator (NaO content of 4%) or not, and water-solid ratio (/ 0.

View Article and Find Full Text PDF

Sustainable Management of Photovoltaic Waste Through Recycling and Material Use in the Construction Industry.

Materials (Basel)

January 2025

Faculty of Materials Science and Ceramics, AGH University of Krakow, Al. Mickiewicza 30, 30-059 Kracow, Poland.

The rapid expansion of photovoltaic (PV) technology as a source of renewable energy has resulted in a significant increase in PV panel waste, creating environmental and economic challenges. A promising strategy to address these challenges is the reuse of glass waste from decommissioned PV panels as a component of cementitious materials. This review explores the potential of integrating glass waste from PV panels into cementitious materials, focusing on its impact on their mechanical, thermal, and durability properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!