Mesoporous silica particles are of great interest in the field of dental composites as functional inorganic fillers due to their unique interconnected pores which can form micromechanical interlocking at the filler-resin interfaces. However, the degradation of mesoporous silica is fast in wet environments, leading to the poor mechanical stability of dental composites. Here, we synthesized Zr-doped mesoporous silica spheres (Zr-MSS) to increase the chemical stability of the particles. The particles were formulated with dental resins (Bisphenol A glycerolate dimethacrylate/triethylene glycol dimethacrylate, 50/50, wt%) to evaluate the performance of dental composites. Dental composites filled with different amount of Zr-MSS (15, 20, 25 and 30 wt%) and their bimodal fillers with nonporous silica spheres (NSS) at a total filler loading of 60 wt% (mass ratios of Zr-MSS: NSS = 10:50) were prepared. Neat resin matrix and samples filled with mesoporous silica spheres (MSS) were used as control. The results showed that the decrease percentage of flexural strength of dental resins with Zr-MSS was the lowest, which was between 3.4 and 6.8%. It was between 20.8 and 35.5% for those with MSS. Further studies revealed that the incorporation of Zr into mesoporous fillers did not affect their light curing ability of dental composites. Not only that, cell proliferation on the dental composites with Zr-MSS was promoted, suggesting improved biocompatibility of the restorations. These indicated that the prepared Zr-MSS would be promising functional fillers for dental composite resins.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jmbbm.2025.106902 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!