The role of mitochondrial dysfunction in Huntington's disease: Implications for therapeutic targeting.

Biomed Pharmacother

School of Medical and Life Sciences, Sunway University, Sunway City, Malaysia; Datta Meghe College of Pharmacy, Datta Meghe Institute of Higher Education and Research (deemed to be University), Sawangi (M), Wardha, India. Electronic address:

Published: January 2025

Huntington's disease (HD) is a progressive, autosomal dominant neurodegenerative disorder characterized by cognitive decline, motor dysfunction, and psychiatric disturbances. A common feature of neurodegenerative disorders is mitochondrial dysfunction, which affects the brain's sensitivity to oxidative damage and its high oxygen demand. This dysfunction may plays a significant role in the pathogenesis of Huntington's disease. HD is caused by a CAG repeat expansion in the huntingtin gene, which leads to the production of a toxic mutant huntingtin (mHTT) protein. This disruption in mitochondrial function compromises energy metabolism and increases oxidative stress, resulting in mitochondrial DNA abnormalities, impaired calcium homeostasis, and altered mitochondrial dynamics. These effects ultimately may contribute to neuronal dysfunction and cell death, underscoring the importance of targeting mitochondrial function in developing therapeutic strategies for HD. This review discusses the mechanistic role of mitochondrial dysfunction in Huntington's disease. Mitochondrial dysfunction is a crucial factor in HD, making mitochondrial-targeted therapies a promising approach for treatment. We explore therapies that address bioenergy deficits, antioxidants that reduce reactive oxygen species, calcium modulators that restore calcium homeostasis, and treatments that enhance mitochondrial dynamics to rejuvenate mitochondrial function. We also highlight innovative treatment approaches such as gene editing and stem cell therapy, which offer hope for more personalized strategies. In conclusion, understanding mitochondrial dysfunction in Huntington's disease may guide potential treatment strategies. Targeting this dysfunction may help to slow disease progression and enhance the quality of life for individuals affected by Huntington's disease.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biopha.2025.117827DOI Listing

Publication Analysis

Top Keywords

huntington's disease
24
mitochondrial dysfunction
20
dysfunction huntington's
12
mitochondrial function
12
mitochondrial
10
dysfunction
9
role mitochondrial
8
calcium homeostasis
8
mitochondrial dynamics
8
disease
7

Similar Publications

Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder characterized by a repeat of the cytosine-adenine-guanine trinucleotide (CAG) in the huntingtin gene (HTT). This results in the translation of a mutant huntingtin (mHTT) protein with an abnormally long polyglutamine (polyQ) repeat. The pathology of HD leads to neuronal cell loss, motor abnormalities, and dementia.

View Article and Find Full Text PDF

ARCH: Large-scale knowledge graph via aggregated narrative codified health records analysis.

J Biomed Inform

January 2025

Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, 02115, MA, USA; VA Boston Healthcare System, 150 S Huntington Ave, Boston, 02130, MA, USA. Electronic address:

Objective: Electronic health record (EHR) systems contain a wealth of clinical data stored as both codified data and free-text narrative notes (NLP). The complexity of EHR presents challenges in feature representation, information extraction, and uncertainty quantification. To address these challenges, we proposed an efficient Aggregated naRrative Codified Health (ARCH) records analysis to generate a large-scale knowledge graph (KG) for a comprehensive set of EHR codified and narrative features.

View Article and Find Full Text PDF

Vitamin B (thiamine) plays an important role in human metabolism. It is essential for the proper growth and development of the body and has a positive effect on the functioning of the digestive, cardiovascular, and nervous systems. Additionally, it stimulates the brain and improves the psycho-emotional state.

View Article and Find Full Text PDF

Associations Between Diabetes Mellitus and Neurodegenerative Diseases.

Int J Mol Sci

January 2025

Chair and Department of General Biology and Parasitology, Medical University of Warsaw, Chałubińskiego 5, 02-004 Warsaw, Poland.

Diabetes mellitus (DM) and neurodegenerative diseases/disturbances are worldwide health problems. The most common chronic conditions diagnosed in persons 60 years and older are type 2 diabetes mellitus (T2DM) and cognitive impairment. It was found that diabetes mellitus is a major risk for cognitive decline, dementia, Parkinson's disease (PD), Alzheimer's disease (AD), Huntington's disease (HD), amyotrophic lateral sclerosis (ALS) and other neurodegenerative disorders.

View Article and Find Full Text PDF

AI-Powered Neurogenetics: Supporting Patient's Evaluation with Chatbot.

Genes (Basel)

December 2024

Genomic Medicine Laboratory UILDM, IRCCS Santa Lucia Foundation, 00179 Rome, Italy.

Background/objectives: Artificial intelligence and large language models like ChatGPT and Google's Gemini are promising tools with remarkable potential to assist healthcare professionals. This study explores ChatGPT and Gemini's potential utility in assisting clinicians during the first evaluation of patients with suspected neurogenetic disorders.

Methods: By analyzing the model's performance in identifying relevant clinical features, suggesting differential diagnoses, and providing insights into possible genetic testing, this research seeks to determine whether these AI tools could serve as a valuable adjunct in neurogenetic assessments.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!