Objective: Arterial sampling for PET imaging often involves continuously measuring the radiotracer activity concentration in blood using an automatic blood sampling system (ABSS). We proposed and validated an external delay and dispersion correction procedure needed when a change in flow rate occurs during data acquisition. We also measured the external dispersion constant of [11C]CURB, [18F]FDG, [18F]FEPPA, and [18F]SynVesT-1.

Approach: External delay and dispersion constants were measured for the flow rates of 350, 300, 180, and 150 mL/h, using 1-minute-long rectangular inputs (n = 10; 18F-fluoride in saline). Resulting constants were used to validate the external delay and dispersion corrections (n = 6; 18F-fluoride in saline; flow rate change: 350 to 150 mL/h and 300 to 180 mL/h); constants were modelled to transition linearly between flow rates. Corrected curves were assessed using the percent area-under-the-curve (AUC) ratio and a modified model selection criterion (MSC). External delay and dispersion constants were measured for various radiotracers using a blood analog (i.e., similar viscoelastic properties).

Main Results: ABSS outputs were successfully corrected for external delay and dispersion using our proposed method accounting for a change in flow rate. AUC ratio reduced from ~10% for the uncorrected 350-150 mL/h output (~6% for the 300-180 mL/h) to < 1% after correction when compared to true input (511 keV energy window); approx. 5-fold increase in MSC. Assuming an internal dispersion constant of 5 seconds, the dispersion constant (internal + external) for [11C]CURB, [18F]FDG, [18F]FEPPA, and [18F]SynVesT-1 was 13, 9, 16, and 10 s, respectively.

Significance: This study presented an external delay and dispersion correction procedure needed when a change in flow rate occurs during ABSS data acquisition. Additionally, this is the first study to measure the external delay and dispersion constants using a blood analog solution, a suitable alternative to blood when estimating external dispersion.

Download full-text PDF

Source
http://dx.doi.org/10.1088/2057-1976/adae13DOI Listing

Publication Analysis

Top Keywords

external delay
32
delay dispersion
32
flow rate
16
dispersion
12
dispersion correction
12
flow rates
12
change flow
12
dispersion constant
12
dispersion constants
12
external
11

Similar Publications

Purpose: This study aimed to identify if a subset of men can safely avoid or delay prostate biopsy based on negative results of prostate-specific membrane antigen positron emission tomography (PSMA-PET).

Materials And Methods: Among 341 consecutive cases in a prospective biopsy cohort (NCT05073653), 111 treatment-naïve men with negative PSMA-PET (PRIMARY-score 1/2) were included. All participants underwent PSMA-PET and histopathological examinations.

View Article and Find Full Text PDF

Human skin is a physical and biochemical barrier that protects the internal body from the external environment. Throughout a person's life, the skin undergoes both intrinsic and extrinsic aging, leading to microscopic and macroscopic changes in its morphology. In addition, the repair processes slow with aging, making the older population more susceptible to skin diseases.

View Article and Find Full Text PDF

This research investigates potential mechanisms of novel magnetic field (MF) treatments in inhibiting cell-wall-degrading enzymes, aiming to reduce weight loss and preserve the post-harvest quality of tomatoes ( L.) as a climacteric fruit. The optimization of the processing parameters, including MF intensity (1, 2, 3 mT), frequency (0, 50, 100 Hz), and duration (10, 20, 30 min), was accomplished by applying an orthogonal array design.

View Article and Find Full Text PDF

External delay and dispersion correction of automatically sampled arterial blood with dual flow rates.

Biomed Phys Eng Express

January 2025

Brain Health Imaging Centre, Centre for Addiction and Mental Health, B68-250 College St, Toronto, Ontario, M5T 1R8, CANADA.

Objective: Arterial sampling for PET imaging often involves continuously measuring the radiotracer activity concentration in blood using an automatic blood sampling system (ABSS). We proposed and validated an external delay and dispersion correction procedure needed when a change in flow rate occurs during data acquisition. We also measured the external dispersion constant of [11C]CURB, [18F]FDG, [18F]FEPPA, and [18F]SynVesT-1.

View Article and Find Full Text PDF

Introduction: To interact with the environment, it is crucial to distinguish between sensory information that is externally generated and inputs that are self-generated. The sensory consequences of one's own movements tend to induce attenuated behavioral- and neural responses compared to externally generated inputs. We propose a computational model of sensory attenuation (SA) based on Bayesian Causal Inference, where SA occurs when an internal cause for sensory information is inferred.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!