Negotiating social dynamics among allies and enemies is a complex problem that often requires individuals to tailor their behavioral approach to a specific situation based on environmental and/or social factors. One way to make these contextual adjustments is by arranging behavioral output into intentional patterns. Yet, few studies explore how behavioral patterns vary across a wide range of contexts, or how allies might interlace their behavior to produce a coordinated response. Here, we investigate the possibility that resident female and male downy woodpeckers guard their breeding territories from conspecific intruders by deploying defensive behavior in context-specific patterns. To study whether this is the case, we use correlation networks to reveal how suites of agonistic behavior are interrelated. We find that residents do organize their defense into definable patterns, with female and male social mates deploying their behaviors non-randomly in a correlated fashion. We then employ spectral clustering analyses to further distill these responses into distinct behavioral motifs. Our results show that this population of woodpeckers adjusts the defensive motifs deployed according to threat context. When we combine this approach with behavioral transition analyses, our results reveal that pair coordination is a common feature of territory defense in this species. However, if simulated intruders are less threatening, residents are more likely to defend solo, whereby only one bird deploys defensive behaviors. Overall, our study supports the hypothesis that nonhuman animals can pattern their behavior in a strategic and coordinated manner, while demonstrating the power of systems approaches for analyzing multiagent behavioral dynamics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1371/journal.pcbi.1012740 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!