Images are important information carriers in our lives, and images should be secure when transmitted and stored. Image encryption algorithms based on chaos theory emerge in endlessly. Based on previous various chaotic image fast encryption algorithms, this paper proposes a color image sector fast encryption algorithm based on one-dimensional composite sinusoidal chaotic mapping. The main purpose of this algorithm is to improve the encryption and decryption speed of color images and improve the efficiency of image encryption in the big data era. First, four basic chaos maps are combined in pairs and added with sine operations. Six one-dimensional composite sinusoidal chaos maps (CSCM) were obtained. Secondly, select the two best chaotic mappings LCS and SCS. The randomness of these two chaotic mappings was verified through Lyapunov index and NIST SP 800-22 randomness tests. Thirdly, the encryption process is carried out according to the shape of a traditional Chinese fan, and the diffusion and scrambling of each pixel of the image are performed in parallel. This greatly improves encryption speed. When diffusing, changing the value of one pixel can affect the values of multiple subsequent pixels. When scrambling, each pixel changes position with the three pixels before it according to the chaotic sequence. Finally, through many experiments, it is proved that the image encryption algorithm not only greatly improves the encryption and decryption speed, but also improves various indexes. The key space reached 2192, the average information entropy was 7.9994, the average NPCR was 99.6172, and the average UACI was 33.4646. The algorithm can also resist some common attacks and accidents, such as exhaustion attack, differential attack, noise attack, information loss and so on.
Download full-text PDF |
Source |
---|---|
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0310279 | PLOS |
Images are important information carriers in our lives, and images should be secure when transmitted and stored. Image encryption algorithms based on chaos theory emerge in endlessly. Based on previous various chaotic image fast encryption algorithms, this paper proposes a color image sector fast encryption algorithm based on one-dimensional composite sinusoidal chaotic mapping.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran.
Oxazolidine is a new category of stimuli-chromic compounds that has unique intelligent behaviors such as halochromism, hydrochromism, solvatochromism, and ionochromism, all of which have potential applications for designing and constructing chemosensors by using functionalized-polymer nanocarriers. Here, the poly(MMA--HEMA) based nanoparticles were synthesized by emulsion copolymerizing methyl methacrylate (MMA) and 2-hydroxyethyl methacrylate (HEMA) in different copolymer compositions. The poly(MMA--HEMA) based nanoparticles were modified physically with tertiary amine-functionalized oxazolidine (as an intelligent pH-responsive organic dye) to prepare halochromic latex nanoparticles.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Instrumentation Engineering, Madras Institute of Technology Campus, Anna University, Chromepet, Chennai 44, India.
Cloud Computing (CC) is a fast emerging field that enables consumers to access network resources on-demand. However, ensuring a high level of security in CC environments remains a significant challenge. Traditional encryption algorithms are often inadequate in protecting confidential data, especially digital images, from complex cyberattacks.
View Article and Find Full Text PDFJ Hum Hypertens
January 2025
Department of Pediatrics and Child Health, University of Ilorin, Ilorin, Nigeria.
Int J Biol Macromol
January 2025
Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry (CAF), Jiangsu Province, No 16, Suojin Wucun, Nanjing 210042, China.
Eutectic gels as important conductive polymers have promising practical applications in wearable electronic devices. However, the development of the ultra-stretchable and self-adhesive eutectic gel for multifunctional flexible sensors remains a challenge. Here, a lignin-enabled ultra-stretchable eutectic gel (LEG) integrating with excellent self-adhesion and high conductivity is prepared through polymerizable deep eutectic solvents (PDES) treated lignin followed by in-situ polymerization.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!