Parkinson's disease (PD) is a common disease of the elderly. Given the easy accessibility of handwriting samples, many researchers have proposed handwriting-based detection methods for Parkinson's disease. Extracting more discriminative features from handwriting is an important step. Although many features have been proposed in previous researches, the insight analysis of the combination of handwriting's kinematic, pressure, and angle dynamic features is lacking. Moreover, most existing feature is incompletely represented, with feature information lost. Therefore, to solve the above problems, a new feature extraction approach for PD detection is proposed using handwriting. First, built on the kinematic, pressure, and angle dynamic features, we propose a moment feature by composed these three types of features, an overall representation of these three types of features information. Then, we proposed a feature extraction method to extract time-frequency-based statistical (TF-ST) features from dynamic handwriting features in terms of their temporal and frequency characteristics. Finally, we proposed an escape Coati Optimization Algorithm (eCOA) for global optimization to enhance classification performance. Self-constructed and public datasets are used to verify the proposed method's effectiveness respectively. The experimental results showed an accuracy of 97.95% and 98.67%, a sensitivity of 98.15% (average) and 97.78%, a specificity of 99.17% (average) and 100%, and an AUC of 98.66% (average) and 98.89%. The code is available at https://github.com/dreamhcy/MLforPD.

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0318021PLOS

Publication Analysis

Top Keywords

feature extraction
12
parkinson's disease
12
extraction method
8
dynamic handwriting
8
features
8
features proposed
8
kinematic pressure
8
pressure angle
8
angle dynamic
8
dynamic features
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!