Petroleum hydrocarbon pollution causes significant damage to soil, so accurate prediction and early intervention are crucial for sustainable soil management. However, traditional soil analysis methods often rely on statistical methods, which means they always rely on specific assumptions and are sensitive to outliers. Existing machine learning based methods convert features containing spatial information into one-dimensional vectors, resulting in the loss of some spatial features of the data. This study explores the application of Three-Dimensional Convolutional Neural Networks (3DCNN) in spatial interpolation to evaluate soil pollution. By introducing Channel Attention Mechanism (CAM), the model assigns different weights to auxiliary variables, improving the prediction accuracy of soil hydrocarbon content. We collected soil pollution data and validated the spatial distribution map generated using this method based on the drilling dataset. The results indicate that compared with traditional Kriging3D methods (R2 = 0.318) and other machine learning methods such as support vector regression (R2 = 0.582), the proposed 3DCNN based method can achieve better accuracy (R2 = 0.954). This approach provides a sustainable tool for soil pollution management, supports decision-makers in developing effective remediation strategies, and promotes the sustainable development of spatial interpolation techniques in environmental science.
Download full-text PDF |
Source |
---|---|
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0316940 | PLOS |
Bull Environ Contam Toxicol
January 2025
Sichuan Academy of Eco-Environmental Sciences, Chengdu, 610041, China.
The widespread application of swine-farming wastewater to soil and water is increasingly contributing to heavy metal contamination, posing significant environmental risks. This study investigated the concentrations of eight heavy metals in swine-farming wastewater following different treatment processes, and assessed their ecological risks in Sichuan Province, China. The findings revealed that zinc, copper and nickel exhibited the highest concentrations, potentially causing heavy or strong contamination levels and leading to heavy or slight ecological risks.
View Article and Find Full Text PDFSci Rep
January 2025
School of Urban Geology and Engineering, Hebei GEO University, 050031, Shijiazhuang, China.
Both over-exploitation and exploitation reduction of groundwater can alter the conditions of groundwater recharge and discharge, thereby impacting the overall quality of groundwater. This study utilizes hydrogeochemical methods and statistical analysis to explore the spatial and temporal evolution characteristics and influencing factors of groundwater chemistry in the saline-freshwater funnel area of Hengshui City under exploitation reduction. The results showed that: With the exception of the deep freshwater funnel area in the western region, which exhibits a trend of water quality deterioration (Cl accounted for more than 25%), groundwater quality in the other funnel areas demonstrates an improving trend (HCO[Formula: see text] accounted for more than 25%).
View Article and Find Full Text PDFSci Rep
January 2025
Department of Geography, School of Environment, Education and Development, The University of Manchester, Arthur Lewis Building, Oxford Road, Manchester, M13 9PL, UK.
Urban woodland composition and configuration have strong associations with land surface temperatures (LST), but the evidence is contradictory due to different spatial scales, regional climate zones, woodland types and urban contexts. In this study, we analyse associations between urban woodland and LST within and between five cities in different Köppen climate zones. Our consistent methodology is framed around local climate zones and conducted at a fine spatial scale.
View Article and Find Full Text PDFSci Data
January 2025
Remote Sensing Centre for Earth System Research (RSC4Earth), Leipzig University, Leipzig, 04103, Germany.
With climate extremes' rising frequency and intensity, robust analytical tools are crucial to predict their impacts on terrestrial ecosystems. Machine learning techniques show promise but require well-structured, high-quality, and curated analysis-ready datasets. Earth observation datasets comprehensively monitor ecosystem dynamics and responses to climatic extremes, yet the data complexity can challenge the effectiveness of machine learning models.
View Article and Find Full Text PDFNat Commun
January 2025
Center for Advanced Radiation Sources, University of Chicago, Chicago, IL, USA.
Phase transitions in the mantle control its internal dynamics and structure. The post-spinel transition marks the upper-lower mantle boundary, where ringwoodite dissociates into bridgmanite plus ferropericlase, and its Clapeyron slope regulates mantle flow across it. This interaction has previously been assumed to have no lateral spatial variations, based on the assumption of a linear post-spinel boundary in pressure and temperature.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!