Motivation: In silico functional annotation of proteins is crucial to narrowing the sequencing-accelerated gap in our understanding of protein activities. Numerous function annotation methods exist, and their ranks have been growing, particularly so with the recent deep learning-based developments. However, it is unclear if these tools are truly predictive. As we are not aware of any methods that can identify new terms in functional ontologies, we ask if they can, at least, identify molecular functions of proteins that are non-homologous to or far-removed from known protein families.
Results: Here, we explore the potential and limitations of the existing methods in predicting molecular functions of thousands of such proteins. Lacking the "ground truth" functional annotations, we transformed the assessment of function prediction into evaluation of functional similarity of protein pairs that likely share function but are unlike any of the currently functionally annotated sequences. Notably, our approach transcends the limitations of functional annotation vocabularies, providing a means to assess different-ontology annotation methods. We find that most existing methods are limited to identifying functional similarity of homologous sequences and fail to predict function of proteins lacking reference. Curiously, despite their seemingly unlimited by-homology scope, deep learning methods also have trouble capturing the functional signal encoded in protein sequence. We believe that our work will inspire the development of a new generation of methods that push boundaries and promote exploration and discovery in the molecular function domain.
Supplementary Information: Supplementary data are available at Bioinformatics online.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/bioinformatics/btaf035 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!