Joining heterogeneous materials in engineered structures remains a significant challenge due to stress concentration at interfaces, which often leads to unexpected failures. Investigating the complex, multiscale-graded structures found in animal tissue provides valuable insights that can help address this challenge. The human meniscus root-bone interface is an exemplary model, renowned for its exceptional fatigue resistance, toughness, and interfacial adhesion properties throughout its lifespan. Here, we investigated the multiscale graded mineralization structure and their strengthening mechanisms within the 30-micron soft-hard interface at the root-bone junction. This graded interface, featuring interdigitated structures and an exponential increase in modulus, undergoes a phase transition from amorphous calcium phosphate (ACP) to gradually matured hydroxyapatite (HAP) crystals, regulated by location-specific distributed biomolecules. In coordination with collagen fibril deformation and reorientation, the in situ tensile mechanical experiments and molecular dynamic simulations revealed that immature ACP particles debond from the collagenous matrix and translocate to dissipate energy, while the progressively matured HAP crystals with high stiffness pins propagating cracks, thereby enhancing both the toughness and fatigue resistance of the interface. To further validate our findings, we built biomimetic soft-hard interfaces with phase-transforming mineralization which exhibited boosted strength, toughness, and interface adhesion. This interface model is generalizable to other material joints and provides a blueprint for developing robust soft-hard composites across various applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1073/pnas.2416085122 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou 311113, China.
Joining heterogeneous materials in engineered structures remains a significant challenge due to stress concentration at interfaces, which often leads to unexpected failures. Investigating the complex, multiscale-graded structures found in animal tissue provides valuable insights that can help address this challenge. The human meniscus root-bone interface is an exemplary model, renowned for its exceptional fatigue resistance, toughness, and interfacial adhesion properties throughout its lifespan.
View Article and Find Full Text PDFBioact Mater
March 2025
College of Dental Medicine, Columbia University Irving Medical Center, 630 W. 168 St. - VC12-212, New York, NY, 10032, USA.
The interface between soft and hard tissues is constituted by a gradient change of cell types and matrix compositions that are optimally designed for proper load transmission and injury protection. In the musculoskeletal system, the soft-hard tissue interfaces at tendon-bone, ligament-bone, and meniscus-bone have been extensively researched as regenerative targets. Similarly, extensive research efforts have been made to guide the regeneration of multi-tissue complexes in periodontium.
View Article and Find Full Text PDFBiomimetics (Basel)
November 2024
School of Mechanical Engineering, Hangzhou Dianzi University, Hangzhou 310018, China.
RSC Adv
November 2024
Department of Chemistry and Biochemistry, University of California Los Angeles USA
Polyurethane (PU)-based electrolyte has become one of the most important research directions because of its unique repeating 'soft-hard' segment co-polymer structure. Its 'soft segment' composition includes polyethylene oxide, polysiloxane, polycarbonate, cellulose and polyether. Among them, polyether-based polyurethane electrolytes (PPES) have the advantages of simple synthesis, molecular structure optimization and functional group modification, which can greatly improve the ionic conductivity of the system and form a good ion transport interface.
View Article and Find Full Text PDFACS Appl Mater Interfaces
November 2024
School of Mechanical Electronic and Information Engineering, China University of Mining and Technology-Beijing, Beijing 100083, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!