Immune Dysregulation in Obesity.

Annu Rev Pathol

Diabetes Center and Department of Laboratory Medicine, University of California, San Francisco, California, USA;

Published: January 2025

The immune system plays fundamental roles in maintaining physiological homeostasis. With the increasing prevalence of obesity-a state characterized by chronic inflammation and systemic dyshomeostasis-there is growing scientific and clinical interest in understanding how obesity reshapes immune function. In this review, we propose that obesity is not merely an altered metabolic state but also a fundamentally altered immunological state. We summarize key seminal and recent findings that elucidate how obesity influences immune function, spanning its classical role in microbial defense, its contribution to maladaptive inflammatory diseases such as asthma, and its impact on antitumor immunity. We also explore how obesity modulates immune function within tissue parenchyma, with a particular focus on the role of T cells in adipose tissue. Finally, we consider areas for future research, including investigation of the durable aspects of obesity on immunological function even after weight loss, such as those observed with glucagon-like peptide-1 (GLP-1) receptor agonist treatment. Altogether, this review emphasizes the critical role of systemic metabolism in shaping immune cell functions, with profound implications for tissue homeostasis across various physiological contexts.

Download full-text PDF

Source
http://dx.doi.org/10.1146/annurev-pathmechdis-051222-015350DOI Listing

Publication Analysis

Top Keywords

immune function
12
immune
6
obesity
6
immune dysregulation
4
dysregulation obesity
4
obesity immune
4
immune system
4
system plays
4
plays fundamental
4
fundamental roles
4

Similar Publications

Clinical evidence increasingly suggests that traditional treatments for dysfunctional uterine bleeding (DUB) have limited success. In this study, blood samples from 10 DUB patients and 10 healthy controls were collected for transcriptome sequencing. Then, the differentially expressed genes (DEGs) were screened and crossed with the DUB-related module genes to obtain the target genes.

View Article and Find Full Text PDF

SLC39A10 is a key zinc transporter in T cells and its loss mitigates autoimmune disease.

Sci China Life Sci

January 2025

The Second Affiliated Hospital, The First Affiliated Hospital, School of Public Health, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China.

Zinc homeostasis plays an essential role in maintaining immune function and is tightly regulated by zinc transporters. We previously reported that the zinc transporter SLC39A10, located in the cell membrane, critically regulates the susceptibility of macrophages to inflammatory stimuli; however, the functional role of SLC39A10 in T cells is currently unknown. Here, we identified two SNPs in SLC39A10 that are associated with inflammatory bowel disease (IBD).

View Article and Find Full Text PDF

Purpose Of Review: Rheumatoid arthritis (RA) is a complex autoimmune disease characterized by chronic inflammation of the synovial tissue, where T cells play a central role in pathogenesis. Recent research has identified T peripheral helper (Tph) cells as critical mediators of local B cell activation in inflamed tissues. This review synthesizes the latest advancements in our understanding the of the role of T cells in RA, from initiation to established disease.

View Article and Find Full Text PDF

Objective: One of the most severe endocrine side effects of immune checkpoint inhibitors (ICI) is hypophysitis leading to adrenal insufficiency. Recovery is rare, although it has been reported after high-dose glucocorticoid treatment. This is the first randomised study to evaluate whether hormonal recovery differs in patients treated with high-dose glucocorticoids versus glucocorticoid replacement therapy.

View Article and Find Full Text PDF

Plants deploy cellular Ca2+ elevation as a signal for environmental stress signaling. Extracellular ATP (eATP) is released into the extracellular matrix when cells are wounded. DOES NOT RESPOND TO NUCLEOTIDES 1 (DORN1), a key legume-type lectin receptor, senses and binds eATP and activates Ca2+ signaling.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!