Diffuse optical tomography (DOT) enables the in vivo quantification of tissue chromophores, specifically the discernment of oxy- and deoxy-hemoglobin (HbO and HbR, correspondingly). This specific criterion is useful in detecting and predicting early-stage neoadjuvant breast cancer treatment response. To address the issues of the limited channels in the fiber-dependent breast DOT system and limited signal-to-noise ratio in the camera-dependent systems, we hereby present a camera-based lock-in detection scheme to achieve dynamic DOT with improved SNR, which adopted orthogonal frequency division multiplexing technology. The evaluation of the system performance was conducted on tissue phantoms and neoplastic rats, and the results show that this system boasts the capability of executing parallel measurement utilizing a camera detector, enabling the achievement of highly sensitive, and dynamic tomography for breast screening applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jbio.202400473 | DOI Listing |
J Biophotonics
January 2025
The College of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin, China.
Diffuse optical tomography (DOT) enables the in vivo quantification of tissue chromophores, specifically the discernment of oxy- and deoxy-hemoglobin (HbO and HbR, correspondingly). This specific criterion is useful in detecting and predicting early-stage neoadjuvant breast cancer treatment response. To address the issues of the limited channels in the fiber-dependent breast DOT system and limited signal-to-noise ratio in the camera-dependent systems, we hereby present a camera-based lock-in detection scheme to achieve dynamic DOT with improved SNR, which adopted orthogonal frequency division multiplexing technology.
View Article and Find Full Text PDFNeurophotonics
January 2024
National Institute of Environmental Health Sciences, National Institutes of Health, Neurobiology Laboratory, Division of Intramural Research, Durham, North Carolina, United States.
Significance: Fiber photometry (FP) is a widely used technique in modern behavioral neuroscience, employing genetically encoded fluorescent sensors to monitor neural activity and neurotransmitter release in awake-behaving animals. However, analyzing photometry data can be both laborious and time-consuming.
Aim: We propose the fiber photometry analysis (FiPhA) app, which is a general-purpose FP analysis application.
bioRxiv
July 2023
Neurobiology Laboratory, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, United States.
Significance: Fiber photometry is a widely used technique in modern behavioral neuroscience, employing genetically encoded fluorescent sensors to monitor neural activity and neurotransmitter release in awake-behaving animals, However, analyzing photometry data can be both laborious and time-consuming.
Aim: We propose the FiPhA (Fiber Photometry Analysis) app, which is a general-purpose fiber photometry analysis application. The goal is to develop a pipeline suitable for a wide range of photometry approaches, including spectrally resolved, camera-based, and lock-in demodulation.
Anal Chem
October 2022
Department of Applied Physics and Electronics, Umeå University, SE-90187Umeå, Sweden.
Mid-infrared photothermal (MIP) microscopy is a valuable tool for sensitive and fast chemical imaging with high spatial resolution beyond the mid-infrared diffraction limit. The highest sensitivity is usually achieved with heterodyne MIP employing photodetector point-scans and lock-in detection, while the fastest systems use camera-based widefield MIP with pulsed probe light. One challenge is to simultaneously achieve high sensitivity, spatial resolution, and speed in a large field of view.
View Article and Find Full Text PDFNanomaterials (Basel)
August 2020
Institute of Computational Physics, School of Engineering, Zurich University of Applied Sciences, 8400 Winterthur, Switzerland.
Magnetic hyperthermia treatments utilize the heat generated by magnetic nanoparticles stimulated by an alternating magnetic field. Therefore, analytical methods are required to precisely characterize the dissipated thermal energy and to evaluate potential amplifying or diminishing factors in order to ensure optimal treatment conditions. Here, we present a lock-in thermal imaging setup specifically designed to thermally measure magnetic nanoparticles and we investigate theoretically how the various experimental parameters may influence the measurement.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!