The partitioning of photosynthate among various forest carbon pools is a key process regulating long-term carbon sequestration, with allocation to aboveground woody biomass carbon (AGBC) in particular playing an outsized role in the global carbon cycle due to its slow residence time. However, directly estimating the fraction of gross primary productivity (GPP) that goes to AGBC has historically been difficult and time-consuming, leaving us with persistent uncertainties. We used an extensive dataset of tree-ring chronologies co-located at flux towers to assess the coupling between AGBC and GPP, calculate the fraction of fixed carbon that is allocated to AGBC, and understand the drivers of variability in this fraction. We found that annual AGBC and GPP were rarely correlated, and that annual AGBC represented only a small fraction (c. 9%) of fixed carbon. This fraction varied considerably across sites and was driven by differences in stand density and site climate. Annual AGBC was suppressed by c. 30% during drought and remained below average for years afterward. These results imply that assumptions of relatively stationary allocation of GPP to woody biomass and other plant tissues could lead to systematic biases in modeled carbon accumulation in different plant pools and thus in carbon residence time.

Download full-text PDF

Source
http://dx.doi.org/10.1111/nph.20414DOI Listing

Publication Analysis

Top Keywords

woody biomass
12
annual agbc
12
stand density
8
allocation gpp
8
aboveground woody
8
carbon
8
residence time
8
agbc gpp
8
fraction fixed
8
fixed carbon
8

Similar Publications

The partitioning of photosynthate among various forest carbon pools is a key process regulating long-term carbon sequestration, with allocation to aboveground woody biomass carbon (AGBC) in particular playing an outsized role in the global carbon cycle due to its slow residence time. However, directly estimating the fraction of gross primary productivity (GPP) that goes to AGBC has historically been difficult and time-consuming, leaving us with persistent uncertainties. We used an extensive dataset of tree-ring chronologies co-located at flux towers to assess the coupling between AGBC and GPP, calculate the fraction of fixed carbon that is allocated to AGBC, and understand the drivers of variability in this fraction.

View Article and Find Full Text PDF

In the future, with elevated atmospheric CO (eCO), forests are expected to increase woody biomass to capture more carbon (C), though this is dependent on soil nutrient availability. While young forests may access unused nutrients by growing into an unexplored soil environment, it is unclear how or if mature forests can adapt belowground under eCO. Soil respiration ( ) and nutrient bioavailability are integrative ecosystem measures of below-ground dynamics.

View Article and Find Full Text PDF

Construction of environmentally stable self-adhesive conductive cellulose hydrogel for electronic skin sensor via autocatalytic fast polymerization strategy at room temperature.

Int J Biol Macromol

January 2025

Engineering Research Center of Forestry Biomass Materials and Bioenergy (Ministry of Education), National Forest and Grass Administration Woody Spices (East China) Engineering Technology Research Center, Beijing Forestry University, Beijing 100083, China. Electronic address:

Bio-based conductive hydrogels are catching a widespread attention in the field of flexible sensors and human-machine interface interaction. Here, an enhanced autocatalytic system constructed from dopamine-encapsulated cellulose nanofibers (DA@CNF) and Cu in a glycerol-water binary solvent achieved fast auto-polymerization of hydrogels within 60 s. X-ray photoelectron spectra (XPS), UV-vis spectrum (UV), Cyclic Voltammetry (CV) and electron paramagnetic resonance (EPR) were used to characterize the autocatalytic system.

View Article and Find Full Text PDF

A novel hierarchical porous biochar based on ZIF-8 volatile hard template with high-efficiency electrochemical sensing performance for trace determination of Ponceau 4R.

Mikrochim Acta

January 2025

Jiangxi Provincial Key Laboratory of Improved Variety Breeding and Efficient Utilization of Native Tree Species 2024SSY04093, College of Forestry, East China Woody Fragrance and Flavor Engineering Research Center of NF&GA, Jiangxi Agricultural University, Nanchang, 330045, People's Republic of China.

A convenient method is proposed using a heat-treatable volatile template to prepare hierarchical porous biochar (HPB). Litsea cubeba leaves and ZIF-8 served as carbon source and volatile hard template, respectively. The good compatibility between ZIF-8 and biomass facilitated their uniform dispersion, and the thermal decomposition of ZIF-8 created abundant pores in the HPB.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!