The tightly connected structure of polybenzimidazole (PBI) membrane can be relaxed by solvent/nonsolvent solution to achieve a high proton conductivity for vanadium redox flow battery (VRFB). However, the nature behind the solvent/nonsolvent strategy is not unraveled. This work proposes a guideline to analyze the effect of PBI membrane relaxing formulas based on the interactions between different components in membranes. The supreme-efficient PBI membrane derived by the DMSO/formamide formula according to the guideline displays a marvelous performance for VRFB, with the proton conductivity boosted by 4300% (from 1.93 to 83.33 mS cm-1), and VRFB assembled with this membrane achieves an outstanding energy efficiency of 82.5% under 200 mA cm-2. Moreover, this work profoundly unravels the structure, property and performance relationship of PBI membrane, which is of great value for the development of membranes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cssc.202402513 | DOI Listing |
ChemSusChem
January 2025
Central South University, College of Chemistry and Chemical Engineering, No.932 South Lushan Road, Yuelu District, 410083, Changsha, CHINA.
The tightly connected structure of polybenzimidazole (PBI) membrane can be relaxed by solvent/nonsolvent solution to achieve a high proton conductivity for vanadium redox flow battery (VRFB). However, the nature behind the solvent/nonsolvent strategy is not unraveled. This work proposes a guideline to analyze the effect of PBI membrane relaxing formulas based on the interactions between different components in membranes.
View Article and Find Full Text PDFMembranes (Basel)
January 2025
Institute of Electrochemistry and Energy Systems, Bulgarian Academy of Sciences, G. Bonchev Str. 10, 1113 Sofia, Bulgaria.
Supercapacitors are advanced energy storage devices renowned for their rapid energy delivery and long operational lifespan, making them indispensable across various industries. Their relevance has grown in recent years due to the adoption of environmentally friendly materials. One such material is bacterial nanocellulose (BNC), produced entirely from microbial sources, offering sustainability and a bioprocess-driven synthesis.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States.
Polymeric membranes with great processability are attractive for the H/CO separation required for hydrogen production from renewable biomass with carbon capture for utilization and sequestration. However, it remains elusive to engineer polymer architectures to obtain desired sub-3.3 Å ultramicropores to efficiently sieve H from CO.
View Article and Find Full Text PDFLangmuir
January 2025
Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, 414000 Hunan, P. R. China.
The high-temperature proton exchange membranes suffer from weak binding strength for phosphoric acid molecules, which seriously reduce the fuel cell efficiency, especially operation stability. Introduction of microporous material in the membrane can effectively reduce the leaching of phosphoric acid. However, due to the poor compatibility between the polymer and fillers, the membrane's performance significantly reduced at high fillers content.
View Article and Find Full Text PDFmBio
December 2024
Institut Pasteur, Université Paris Cité, CNRS UMR6047, Archaeal Virology Unit, Paris, France.
Unlabelled: Cell division is a fundamental process ensuring the perpetuation of all cellular life forms. Archaea of the order Sulfolobales divide using a simpler version of the eukaryotic endosomal sorting complexes required for transport (ESCRT) machinery, composed of three ESCRT-III homologs (ESCRT-III, -III-1, and -III-2), AAA+ ATPase Vps4 and an archaea-specific component CdvA. Here, we clarify how these components act sequentially to drive the division of the hyperthermophilic archaeon .
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!