Recipients often suffer from hyperlactatemia during liver transplantation (LT), but whether hyperlactatemia exacerbates hepatic ischemia-reperfusion injury (IRI) after donor liver implantation remains unclear. Here, the role of hyperlactatemia in hepatic IRI is explored. In this work, hyperlactatemia is found to exacerbate ferroptosis during hepatic IRI. Lactate-primed lysine acetyltransferase 8 (KAT8) is determined to directly lactylate mitochondrial phosphoenolpyruvate carboxykinase 2 (PCK2) at Lys100 and augments PCK2 kinase activity. By using gene-edited mice, evidence indicating that PCK2 exacerbates hepatic ferroptosis during IRI is generated. Mechanistically, PCK2 lactylate at Lys100 acts as a critical inducer of ferroptosis during IRI by competitively inhibiting the Parkin-mediated polyubiquitination of 3-oxoacyl-ACP synthase (OXSM), thereby leading to metabolic remodeling of mitochondrial fatty acid synthesis (mtFAS) and the potentiation of oxidative phosphorylation and the tricarboxylic acid cycle. More importantly, targeting PCK2 is demonstrated to markedly ameliorate hyperlactatemia-mediated ferroptosis during hepatic IRI. Collectively, the findings support the use of therapeutics targeting PCK2 to suppress hepatic ferroptosis and IRI in patients with hyperlactatemia during LT.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/advs.202414141 | DOI Listing |
Front Biosci (Landmark Ed)
January 2025
Division of Molecular Psychiatry, Center of Mental Health, University of Hospital Würzburg, 97080 Würzburg, Germany.
Background: The inheritance of the short allele, encoding the serotonin transporter (SERT) in humans, increases susceptibility to neuropsychiatric and metabolic disorders, with aging and female sex further exacerbating these conditions. Both central and peripheral mechanisms of the compromised serotonin (5-HT) system play crucial roles in this context. Previous studies on SERT-deficient (Sert) mice, which model human SERT deficiency, have demonstrated emotional and metabolic disturbances, exacerbated by exposure to a high-fat Western diet (WD).
View Article and Find Full Text PDFMedicina (Kaunas)
January 2025
Clinical Research, Specialized Center for Diabetes, Obesity and Prevention of Cardiovascular Diseases (CEDOPEC), Mexico City 11650, Mexico.
: Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD) stems from disrupted lipid metabolism in the liver, often linked to obesity, type 2 diabetes, and dyslipidemia. In Mexico, where obesity affects 36.9% of adults, MASLD prevalence has risen, especially with metabolic syndrome affecting 56.
View Article and Find Full Text PDFMol Metab
January 2025
Québec Heart and Lung Institute Research Center, Université Laval - 2725, Ch. Sainte-Foy, Québec, QC, Canada, G1V 4G5; Department of Medicine, Faculty of Medicine, Université Laval - 1050 Av. de la Médecine, Québec, QC, Canada, G1V 0A6; Institute of Nutrition and Functional Foods, Université Laval - 2440 Bd. Hochelaga, Québec, QC, Canada, G1V 0A6. Electronic address:
Background: Increased fructose consumption contributes to type 2 diabetes (T2D) and metabolic dysfunction-associated steatotic liver disease (MASLD), but the mechanisms are ill-defined. Gut nutrient sensing involves enterohormones like Glucagon-like peptide (Glp)2, which regulates the absorptive capacity of luminal nutrients. While glucose is the primary dietary energy source absorbed in the gut, it is unknown whether excess fructose alters gut glucose sensing to impair blood glucose regulation and liver homeostasis.
View Article and Find Full Text PDFJ Hepatol
January 2025
Department of Minimal Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China; Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China; Lead contact. Electronic address:
Background & Aims: Hepatic ischemia‒reperfusion injury (HIRI) is a critical complication of liver surgery and transplantation that contributes significantly to severe organ failure. GRINA, a calcium-regulating endoplasmic reticulum (ER) protein, plays an essential role in controlling the unfolded protein response; however, its role in HIRI remains unclear. The aim of this study was to investigate the function of GRINA in HIRI and explore its potential as a therapeutic target.
View Article and Find Full Text PDFPhytomedicine
January 2025
The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405 Guangdong, PR China. Electronic address:
Background: Sirtuin 6 (SIRT6), a potential therapeutic target for non-alcoholic fatty liver disease (NAFLD), has been shown to regulate fatty acid oxidation (FAO) by interacting with peroxisome proliferator-activated receptor α (PPARα). However, the impact of SIRT6-PPARα pathway on NAFLD phenotype has not yet been reported. Qige decoction (QG), a traditional Chinese medicine (TCM) formula, is widely applied to treat disorders of glycolipid metabolism.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!