Corneal substitutes with structural and compositional characteristics resembling those of natural corneas have attracted considerable attention. However, biomimicking the complex hierarchical organization of corneal stroma is challenging. In this study, humanized corneal stroma-like adhesive patches (HCSPs) are prepared through a multi-step process. First, polyethylene glycol diacrylate is cast and cured within decellularized porcine cornea (DPC) templates. The DPCs are then enzymatically digested to obtain hydrogel skeletons, which are finally integrated with human corneal extracellular matrix and methacrylate gelatin. HCSPs replicate the ultrastructure, protein components, and optical properties of human corneas and exhibit improved anti-swelling and anti-degradation capabilities compared with conventional DPCs and recombinant human collagen patches. HCSPs can deliver methacrylate gelatin at the ocular surface temperature (37 °C) and achieve stable adhesion to the corneal stroma upon 405 nm light irradiation. Furthermore, HCSPs promote the survival and migration of corneal epithelial and stromal cells while preserving their phenotypes. In rabbit models of lamellar keratoplasty and microperforation repair, HCSPs accelerate epithelial healing, minimize suture-associated complications, and maintain structural stability. These findings suggest that HCSPs are promising donor corneal substitutes for clinical applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/advs.202411540 | DOI Listing |
Medicina (Kaunas)
December 2024
Faculty of Medicine, Victor Babes University of Medicine and Pharmacy, 2 Eftimie Murgu, 300041 Timisoara, Romania.
Cartilage repair remains a critical challenge in orthopaedic medicine due to the tissue's limited self-healing ability, contributing to degenerative joint conditions such as osteoarthritis (OA). In response, regenerative medicine has developed advanced therapeutic strategies, including cell-based therapies, gene editing, and bioengineered scaffolds, to promote cartilage regeneration and restore joint function. This narrative review aims to explore the latest developments in cartilage repair techniques, focusing on mesenchymal stem cell (MSC) therapy, gene-based interventions, and biomaterial innovations.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, 266071, China.
Corneal substitutes with structural and compositional characteristics resembling those of natural corneas have attracted considerable attention. However, biomimicking the complex hierarchical organization of corneal stroma is challenging. In this study, humanized corneal stroma-like adhesive patches (HCSPs) are prepared through a multi-step process.
View Article and Find Full Text PDFZhongguo Xiu Fu Chong Jian Wai Ke Za Zhi
January 2025
Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P. R. China.
Objective: To summarize the research progress of bioactive scaffolds in the repair and regeneration of osteoporotic bone defects.
Methods: Recent literature on bioactive scaffolds for the repair of osteoporotic bone defects was reviewed to summarize various types of bioactive scaffolds and their associated repair methods.
Results: The application of bioactive scaffolds provides a new idea for the repair and regeneration of osteoporotic bone defects.
Carbohydr Polym
March 2025
Key Lab of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China. Electronic address:
In an effort to mitigate or reverse the pathological progression of early-stage osteonecrosis of the femoral head (ONFH), this study employed a promising strategy that involves the sustained delivery of osteogenic factors to augment core decompression, facilitated by the use of composite hydrogels. Specifically, a hydrogel was synthesized by blending chitosan, Pluronic F-127, and tripolyphosphate, utilizing both ionic bonding and copolymer micelle cross-linking techniques. This hydrogel demonstrated exceptional biocompatibility, temperature responsiveness, pH-dependent biodegradation, and controlled release properties.
View Article and Find Full Text PDFCarbohydr Polym
March 2025
School of Materials Science and Engineering, Nanjing University of Science & Technology, Nanjing 210094, PR China. Electronic address:
The high-dynamic, high-loading environment in the joint cavity puts urgent demands on the cartilage regenerative materials with shear responsiveness and lubrication. Here, a new type of injectable hydrogel composed of oxidized hyaluronic acid (OHA), adipic dihydrazide-grafted hyaluronic acid (HA-ADH), oxidized chondroitin sulfate (OChs), and decellularized extracellular matrix methacrylate (dECMMA) was fabricated. The aldehyde groups in OHA and OChs reacted with the amino groups in HA-ADH to form a dynamic hydrogel, which was then covalently crosslinked with dECMMA to create a dual-crosslinked hydrogel with sufficient mechanical strength.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!