Aqueous zinc-based batteries (AZBs) are gaining widespread attention owing to their intrinsic safety, relatively low electrode potential, and high theoretical capacity. Transition metal dichalcogenides (TMDs) have convenient 2D ion diffusion channels, so they have been identified as promising host materials for AZBs, but face several key challenges such as the narrow interlayer spacing and the lack of in-deep understanding energy storage mechanisms. This review presents a comprehensive summary and discussion of the intrinsic structure, charge storage mechanisms, and key fabrication strategies of TMD-based cathodes for AZBs. Firstly, the structural features including phase types and electrical properties of TMDs are underscored. Then, the charge storage mechanisms and activation principles in TMDs are elaborated along with the discussions about their influence on electrochemical performance. Afterward, specific attention is focused on the fabrication strategies of high-performance TMD cathodes, including interlayer expansion, defect creation, phase transition, and heteroatom doping. Finally, the key challenges are considered and potential effective strategies are proposed to design high-performance aqueous Zn-TMDs batteries.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.202410036DOI Listing

Publication Analysis

Top Keywords

storage mechanisms
16
fabrication strategies
12
energy storage
8
transition metal
8
metal dichalcogenides
8
key challenges
8
charge storage
8
insights fabrication
4
strategies
4
strategies energy
4

Similar Publications

Ecosystem functioning and management are primarily concerned with addressing climate change and biodiversity loss, which are closely linked to carbon stock and species diversity. This research aimed to quantify forest understory (shrub and herb) diversity, tree biomass and carbon sequestration in the Binsar Wildlife Sanctuary. Using random sampling methods, data were gathered from six distinct forest communities.

View Article and Find Full Text PDF

Crude oil pollution of soil is an important issue that has serious effects on both the environment and human health. Phytoremediation is a promising approach to cleaning up oil-contaminated soil. In order to facilitate phytoremediation effects for oil-contaminated soil, this study set up a pot experiment to explore the co-application potentiality of L.

View Article and Find Full Text PDF

Laser reduction of graphene oxide (GO) is a promising approach for achieving flexible, robust, and electrically conductive graphene/polymer composites. Resulting composite materials show significant technological potential for energy storage, sensing, and bioelectronics. However, in the case of insulating polymers, the properties of electrodes show severely limited performance.

View Article and Find Full Text PDF

Tellurium, recognized as one of the technology-critical elements, should be considered as a xenobiotic. Its application, i.a.

View Article and Find Full Text PDF

Niobium pentoxide (T-NbO) is a promising anode material for dual-ion batteries due to its high lithium capacity and fast ion storage and release mechanism. However, T-NbO suffers from the disadvantages of poor electrical conductivity and fast cycling capacity decay. Herein, a nitrogen-doped three-dimensional porous carbon (RMF) was prepared for loading niobium pentoxide to construct a composite system with excellent electrochemical performance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!