Interface Engineering and Modulation of Nickel Oxide for High Air-Stable p-Type Crystalline Silicon Solar Cells.

Small

Anhui Soltrend New Energy Technology Co., Ltd, Lujiang County, Hefei, 230000, China.

Published: January 2025

Dopant-free passivating contact crystalline silicon solar cells hold the potential of higher efficiency and cost down. In the hole-transport terminal, one still faces the challenge of trade-off between efficiency and stability. In this work, a H-AlO/NiO/Ni stacked hole-transport layer is proposed, where the H-AlO standing for H-rich AlO film can effectively reduce the interfacial defects and the high work function Ni metal results in a low contact resistance of 47.12 mΩ cm. Consequently, the solar cell achieves an efficiency of 20.51%, with a fill factor of 84.83%, demonstrating satisfactory stability. This work provides a strategy for reducing interfacial defects and highlights the potential of stacked structure design for enhancing passivated contact solar cell performance.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.202411818DOI Listing

Publication Analysis

Top Keywords

crystalline silicon
8
silicon solar
8
solar cells
8
stability work
8
interfacial defects
8
solar cell
8
interface engineering
4
engineering modulation
4
modulation nickel
4
nickel oxide
4

Similar Publications

Interface Engineering and Modulation of Nickel Oxide for High Air-Stable p-Type Crystalline Silicon Solar Cells.

Small

January 2025

Anhui Soltrend New Energy Technology Co., Ltd, Lujiang County, Hefei, 230000, China.

Dopant-free passivating contact crystalline silicon solar cells hold the potential of higher efficiency and cost down. In the hole-transport terminal, one still faces the challenge of trade-off between efficiency and stability. In this work, a H-AlO/NiO/Ni stacked hole-transport layer is proposed, where the H-AlO standing for H-rich AlO film can effectively reduce the interfacial defects and the high work function Ni metal results in a low contact resistance of 47.

View Article and Find Full Text PDF

A rear emitter with a p-type boron-doped hydrogenated amorphous silicon/nanocrystalline silicon [a-Si:H(p)/nc-Si:H(p)] stack was prepared for the silicon heterojunction (SHJ) solar cell to improve its short-circuit current density (). CO plasma treatment (CO PT) was applied to a-Si:H(p) to facilitate the crystallization of the subsequently deposited nc-Si:H(p). To evaluate the effect of the CO PT, two different nc-Si:H(p) layers with low and high crystallinity (χ) were investigated.

View Article and Find Full Text PDF

Heteroarene-Fused Benzo[b]arsoles: Structure, Photophysical Properties, and Effects of the Bridging Element.

Chem Asian J

January 2025

Kyoto Institute of Technology: Kyoto Kogei Sen'i Daigaku, Faculty of Molecular Chemistry and Engineering, Goshokaido-cho, Matsugasaki, Sakyo-ku, 606-0962, Kyoto, JAPAN.

Heteroarene-fused heteroles have attracted considerable attention owing to their unique electronic and photophysical properties. The bridging element plays a crucial role in determining the electronic characteristics of the resulting π-conjugated molecules. In this study, we synthesized a series of heteroarene-fused benzo[b]arsoles and investigated their structures and photophysical properties.

View Article and Find Full Text PDF

Low-vibration cryogenic test facility for next generation of ground-based gravitational-wave observatories.

Rev Sci Instrum

January 2025

OzGrav-ANU, ARC Centre for Gravitational Astrophysics, College of Science, The Australian National University, Canberra ACT2601, Australia.

We present the design and commissioning of a cryogenic low-vibration test facility that measures displacement noise from a gram-scale silicon cantilever at the level of 10-16m/Hz at 1 kHz. This sensitivity is necessary for future tests of thermal noise models on cross sections of silicon suspension samples proposed for future gravitational-wave detectors. A volume of ∼36 l is enclosed by radiation shields cooling an optical test cavity that is suspended from a multi-stage pendulum chain providing isolation from acoustic and environmental noise.

View Article and Find Full Text PDF

Here we report a simple self-masking technique for fabricating bioinspired broadband antireflection coatings on both single-crystalline and multicrystalline silicon wafers with the assistance of a polyimide tape. Subwavelength-structured moth-eye nanopillars, which exhibit superior antireflection performance over a broad range of visible and near-IR wavelengths, can be patterned uniformly on the wafer surface by applying a chlorine-based reactive ion etching (RIE) process. The resulting random nanopillars show improved antireflection properties compared with ordered nanopillars templated by colloidal lithography under the same RIE conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!