Role of NLRP3 Inflammasome in Chronic Pain and Alzheimer's Disease-A Review.

J Biochem Mol Toxicol

Department of Histology and Embryology, Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan, People's Republic of China.

Published: February 2025

The coexistence of Alzheimer's disease (AD) and chronic pain (CP) in the elderly population has been extensively documented, and a growing body of evidence supports the potential interconnections between these two conditions. This comprehensive review explores the mechanisms by which CP may contribute to the development and progression of AD, with a particular focus on neuroinflammatory pathways and the role of microglia, as well as the activation of the NLR family pyrin domain containing 3 (NLRP3) inflammasome. The review proposes that prolonged pain processing in critical brain regions can dysregulate the activity of the NLRP3 inflammasome within microglia, leading to the overproduction of pro-inflammatory cytokines and excessive oxidative stress in these regions. This aberrant microglial response also results in localized neuroinflammation in brain areas crucial for cognitive function. Additionally, CP as a persistent physiological and psychological stressor may be associated with hypothalamic-pituitary-adrenal (HPA) axis dysfunction, systemic inflammation, disruption of the blood-brain barrier (BBB), and neuroinflammation. These pathophysiological changes can cause morphological and functional impairments in brain regions responsible for cognition, memory, and neurotransmitter production, potentially contributing to the development and progression of CP-associated AD. Resultant neuroinflammation can further promote amyloid-beta (Aβ) plaque deposition, a hallmark of AD pathology. Potential therapeutic interventions targeting these neuroinflammatory pathways, particularly through the regulation of microglial NLRP3 activation, hold promise for improving outcomes in individuals with comorbid CP and AD. However, further research is required to fully elucidate the complex interplay between these conditions and develop effective treatment strategies.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jbt.70071DOI Listing

Publication Analysis

Top Keywords

nlrp3 inflammasome
12
chronic pain
8
development progression
8
neuroinflammatory pathways
8
brain regions
8
role nlrp3
4
inflammasome chronic
4
pain alzheimer's
4
alzheimer's disease-a
4
disease-a review
4

Similar Publications

Background: Hyperoxia-induced brain injury is a severe neurological complication that is often accompanied by adverse long-term prognosis. The pathogenesis of hyperoxia-induced brain injury is highly complex, with neuroinflammation playing a crucial role. The activation of the nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) inflammasome, which plays a pivotal role in regulating and amplifying the inflammatory response, is the pathological core of hyperoxia-induced brain injury.

View Article and Find Full Text PDF

Neuroinflammation is a key factor in the progression of neurodegenerative diseases, driven by the dysregulation of molecular pathways and activation of the brain's immune system, resulting in the release of pro-inflammatory and oxidative molecules. This chronic inflammation is exacerbated by peripheral leukocyte infiltration into the central nervous system. Medicinal plants, with their historical use in traditional medicine, have emerged as promising candidates to mitigate neuroinflammation and offer a sustainable alternative for addressing neurodegenerative conditions in a green healthcare framework.

View Article and Find Full Text PDF

Gedunin Mitigates -Induced Skin Inflammation by Inhibiting the NF-κB Pathway.

Pharmaceuticals (Basel)

January 2025

Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea.

: , a bacterium residing in hair follicles, triggers acne by inducing monocyte-mediated inflammatory cytokine production. Gedunin, a limonoid derived from (commonly known as neem), is renowned for its antifungal, antimalarial, anticancer, anti-inflammatory, and neuroprotective effects. However, its role in mitigating -induced skin inflammation remains unexplored.

View Article and Find Full Text PDF

Monosodium urate crystal accumulation in the joints is the cause of gout, an inflammatory arthritis that is initiated by elevated serum uric acid levels. It is the most prevalent form of inflammatory arthritis, affecting millions worldwide, and requires effective treatments. The necessity for alternatives with fewer side effects is underscored by the frequent adverse effects of conventional therapies, such as urate-lowering drugs.

View Article and Find Full Text PDF

The Effect of Sleep Disruption on Cardiometabolic Health.

Life (Basel)

January 2025

Sleep Medicine Institute, Jungwon University, Goesan-gun 28204, Chungcheongbuk-do, Republic of Korea.

Sleep disruption has emerged as a significant public health concern with profound implications for metabolic health. This review synthesizes current evidence demonstrating the intricate relationships between sleep disturbances and cardiometabolic dysfunction. Epidemiological studies have consistently demonstrated that insufficient sleep duration (<7 h) and poor sleep quality are associated with increased risks of obesity, type 2 diabetes, and cardiovascular disease.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!