Acute myocardial infarction (AMI) is associated with well-established metabolic risk factors, especially hyperlipidemia and obesity. Myocardial ischemia-reperfusion injury (mIRI) significantly offsets the therapeutic efficacy of revascularization. Previous studies indicated that disrupted lipid homeostasis can lead to lipid peroxidation damage and inflammation, yet the underlying mechanisms remain unclear. Here, the study demonstrates that hyperlipidemia is a key driver of mIRI. Long-chain fatty acyl-CoA synthetase 1 (ACSL1) is upregulated in both hyperlipidemia and AMI patients. ACSL1 expression is induced by a high-fat microenvironment (oxLDL and palmitic acid) in a concentration-dependent manner. Interestingly, the protein level is positively correlated with total cholesterol level and thromboinflammatory biomarkers. Furthermore, ACSL1 reprogrammed lipid metabolism in monocytes, leading to the accumulation of lysophosphatidylcholine (LPC)/lysophosphatidic acid (LPA). The monocytic LPC/LPA axis accelerated lipid peroxidation and neutrophil extracellular traps (NETs)-induced thromboinflammation via the paracrine effect. The main LPA producer Autotaxinis is also induced under high-fat conditions and then exerts thromboinflammation response through converted LPC to LPA. Finally, ACSL1 knockdown or NETs release inhibitor (DNase I or GSK484) significantly alleviated mIRI in mice. These findings highlight ACSL1 and NETosis as potential key targets for preventing mIRI and underscore the lipid peroxidation in the mechanisms of ACSL1-mediated thromboinflammation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/advs.202406359 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!