COVID-19 disease, caused by the SARS-CoV-2 virus, has significantly altered modern society and lifestyles. We investigated its impact on brain glucose metabolism by meta-analyzing existing studies that utilized 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET) scans of the brain. We conducted a systematic search of MEDLINE and EMBASE databases from inception to August 2024 for English-language publications using the keywords "positron emission tomography", and "COVID-19". We included original research articles that reported changes in brain glucose metabolism following COVID-19 disease. ALE values from these studies were aggregated and tested against a null hypothesis that anticipated a random distribution of ALE values, which proved to be significantly higher than chance. We identified nine papers that met our inclusion criteria. Significant increases in brain glucose metabolism were noted in the left anterior cingulate gyrus, right thalamus, and brainstem. In children with COVID-19 disease, decreased glucose metabolism was observed in the right and left cerebellum, left amygdala/hippocampus, left anterior cingulate gyrus, and right amygdala. In adults with COVID-19 disease, decreased metabolism was seen in the right temporal lobe, brainstem (acute phase), left occipital lobe, left and right temporal lobe (chronic phase). In conclusion, COVID-19 disease impacts brain glucose metabolism, typically manifesting as areas of decreased metabolism in F-FDG PET scans, though increases are also observed. These changes in metabolism vary with the patient's age and the time elapsed between the diagnosis of COVID-19 disease and the PET scan.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11682-025-00966-2DOI Listing

Publication Analysis

Top Keywords

covid-19 disease
28
glucose metabolism
24
brain glucose
20
metabolism
9
metabolism covid-19
8
pet scans
8
ale values
8
left anterior
8
anterior cingulate
8
cingulate gyrus
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!